InverseErfc
InverseErfc[s]
gives the inverse complementary error function obtained as the solution for z in .
Details
- Mathematical function, suitable for both symbolic and numerical manipulation.
- Explicit numerical values are given only for real values of s between 0 and 2.
- For certain special arguments, InverseErfc automatically evaluates to exact values.
- InverseErfc can be evaluated to arbitrary numerical precision.
- InverseErfc automatically threads over lists.
- InverseErfc can be used with Interval and CenteredInterval objects. »
Examples
open allclose allBasic Examples (4)
Scope (26)
Numerical Evaluation (4)
Evaluate numerically to high precision:
The precision of the output tracks the precision of the input:
Evaluate InverseErfc efficiently at high precision:
Compute worst-case guaranteed intervals using Interval and CenteredInterval objects:
Or compute average-case statistical intervals using Around:
Compute the elementwise values of an array:
Or compute the matrix InverseErfc function using MatrixFunction:
Specific Values (4)
Exact results for specific arguments:
Find a real root of the equation :
Plot the InverseErfc function:
Plot the InverseErfc function reflected about :
Function Properties (8)
InverseErfc is defined for all real values from the interval :
InverseErfc takes all real values:
InverseErfc is an analytic function on its domain:
It is not analytic in general, as it has both singularities and discontinuities:
InverseErfc is nonincreasing on its domain:
InverseErfc is injective:
InverseErfc is surjective:
InverseErfc is neither non-negative nor non-positive:
InverseErfc is neither convex nor concave:
Integration (3)
Indefinite integral of InverseErfc:
Definite integral of InverseErfc over its real domain:
Numerical approximation of the definite integral of InverseErfc:
Series Expansions (2)
Series expansion for InverseErfc around :
Taylor expansion for InverseErfc around :
Plot the first three approximations for InverseErfc around :
Function Representations (3)
Primary definition of the inverse error function:
Relation to the inverse complementary error function:
TraditionalForm formatting:
Properties & Relations (4)
Solve a transcendental equation:
Numerically find a root of a transcendental equation:
Compose with the inverse function:
Use PowerExpand to disregard multivaluedness of the inverse function:
InverseErfc is a numeric function:
Possible Issues (1)
InverseErfc evaluates numerically only for :
Neat Examples (1)
Riemann surface of InverseErfc:
Text
Wolfram Research (1996), InverseErfc, Wolfram Language function, https://reference.wolfram.com/language/ref/InverseErfc.html (updated 2023).
CMS
Wolfram Language. 1996. "InverseErfc." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2023. https://reference.wolfram.com/language/ref/InverseErfc.html.
APA
Wolfram Language. (1996). InverseErfc. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/InverseErfc.html