InverseJacobiCS[v,m]
gives the inverse Jacobi elliptic function  .
.
 
     
   InverseJacobiCS
InverseJacobiCS[v,m]
gives the inverse Jacobi elliptic function  .
.
Details
 
   - Mathematical function, suitable for both symbolic and numerical manipulation.
 gives the value of gives the value of for which for which . .
- InverseJacobiCS has branch cut discontinuities in the complex v plane with branch points at  and infinity, and in the complex m plane with branch points at and infinity, and in the complex m plane with branch points at and infinity. and infinity.
- The inverse Jacobi elliptic functions are related to elliptic integrals.
- For certain special arguments, InverseJacobiCS automatically evaluates to exact values.
- InverseJacobiCS can be evaluated to arbitrary numerical precision.
- InverseJacobiCS automatically threads over lists.
Examples
open all close allBasic Examples (4)
Scope (29)
Numerical Evaluation (6)
The precision of the output tracks the precision of the input:
Evaluate for complex arguments:
Evaluate InverseJacobiCS efficiently at high precision:
InverseJacobiCS threads elementwise over lists:
Compute average-case statistical intervals using Around:
Compute the elementwise values of an array:
Or compute the matrix InverseJacobiCS function using MatrixFunction:
Specific Values (4)
Visualization (3)
Plot InverseJacobiCS for various values of the second parameter  :
:
Plot InverseJacobiCS as a function of its parameter  :
:
Function Properties (5)
InverseJacobiCS is not an analytic function:
It has both singularities and discontinuities:
![TemplateBox[{x, {1, /, 3}}, InverseJacobiCS] TemplateBox[{x, {1, /, 3}}, InverseJacobiCS]](Files/InverseJacobiCS.en/12.png) is neither nondecreasing nor nonincreasing:
 is neither nondecreasing nor nonincreasing:
Differentiation and Integration (5)
Differentiate InverseJacobiCS with respect to the second argument  :
:
Definite integral of an odd function over an interval centered at the origin is 0:
Series Expansions (2)
Function Identities and Simplifications (2)
InverseJacobiCS is the inverse function of JacobiCS:
Compose with inverse function:
Use PowerExpand to disregard multivaluedness of the inverse function:
Other Features (2)
Generalizations & Extensions (1)
InverseJacobiCS can be applied to a power series:
Properties & Relations (1)
Obtain InverseJacobiCS from solving equations containing elliptic functions:
 
      See Also
Tech Notes
Related Guides
Related Links
History
Introduced in 1988 (1.0)
Text
Wolfram Research (1988), InverseJacobiCS, Wolfram Language function, https://reference.wolfram.com/language/ref/InverseJacobiCS.html.
CMS
Wolfram Language. 1988. "InverseJacobiCS." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/InverseJacobiCS.html.
APA
Wolfram Language. (1988). InverseJacobiCS. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/InverseJacobiCS.html
BibTeX
@misc{reference.wolfram_2025_inversejacobics, author="Wolfram Research", title="{InverseJacobiCS}", year="1988", howpublished="\url{https://reference.wolfram.com/language/ref/InverseJacobiCS.html}", note=[Accessed: 31-October-2025]}
BibLaTeX
@online{reference.wolfram_2025_inversejacobics, organization={Wolfram Research}, title={InverseJacobiCS}, year={1988}, url={https://reference.wolfram.com/language/ref/InverseJacobiCS.html}, note=[Accessed: 31-October-2025]}
![TemplateBox[{x, {1, /, 3}}, InverseJacobiCS]=1 TemplateBox[{x, {1, /, 3}}, InverseJacobiCS]=1](Files/InverseJacobiCS.en/7.png)
![TemplateBox[{{1, /, 2}, z}, InverseJacobiCS] TemplateBox[{{1, /, 2}, z}, InverseJacobiCS]](Files/InverseJacobiCS.en/10.png)
![TemplateBox[{{1, /, 2}, z}, InverseJacobiCS] TemplateBox[{{1, /, 2}, z}, InverseJacobiCS]](Files/InverseJacobiCS.en/11.png)
![TemplateBox[{x, {1, /, 3}}, InverseJacobiCS] TemplateBox[{x, {1, /, 3}}, InverseJacobiCS]](Files/InverseJacobiCS.en/13.png)
![TemplateBox[{x, {1, /, 3}}, InverseJacobiCS] TemplateBox[{x, {1, /, 3}}, InverseJacobiCS]](Files/InverseJacobiCS.en/14.png)
![TemplateBox[{x, {1, /, 3}}, InverseJacobiCS] TemplateBox[{x, {1, /, 3}}, InverseJacobiCS]](Files/InverseJacobiCS.en/15.png)

![TemplateBox[{nu, m}, InverseJacobiCS] TemplateBox[{nu, m}, InverseJacobiCS]](Files/InverseJacobiCS.en/18.png)
![TemplateBox[{nu, {1, /, 3}}, InverseJacobiCS] TemplateBox[{nu, {1, /, 3}}, InverseJacobiCS]](Files/InverseJacobiCS.en/19.png)

![TemplateBox[{nu, m}, InverseJacobiCS] TemplateBox[{nu, m}, InverseJacobiCS]](Files/InverseJacobiCS.en/21.png)
![TemplateBox[{{-, {1, /, 2}}, m}, InverseJacobiCS] TemplateBox[{{-, {1, /, 2}}, m}, InverseJacobiCS]](Files/InverseJacobiCS.en/22.png)
