KroneckerSymbol
✖
KroneckerSymbol
Details

- KroneckerSymbol is also known as the Jacobi symbol or Legendre symbol.
- Integer mathematical function, suitable for both symbolic and numerical manipulation.
- KroneckerSymbol[n,1] gives 1.
- KroneckerSymbol[n,-1] gives 1 whenever n is non-negative and
otherwise.
- For a number
with
a unit and
primes,
returns
.

Examples
open allclose allBasic Examples (2)Summary of the most common use cases

https://wolfram.com/xid/0bto00wuqweq-psrsi


https://wolfram.com/xid/0bto00wuqweq-9jh4d

Plot the KroneckerSymbol sequence with respect to the second argument:

https://wolfram.com/xid/0bto00wuqweq-ihvhm2

Scope (9)Survey of the scope of standard use cases
Numerical Evaluation (3)
KroneckerSymbol works over integers:

https://wolfram.com/xid/0bto00wuqweq-boeak4


https://wolfram.com/xid/0bto00wuqweq-i1usxz

KroneckerSymbol threads elementwise over lists:

https://wolfram.com/xid/0bto00wuqweq-dkvvun

Symbolic Manipulation (6)
TraditionalForm formatting:

https://wolfram.com/xid/0bto00wuqweq-3wfjxa


https://wolfram.com/xid/0bto00wuqweq-84mt0


https://wolfram.com/xid/0bto00wuqweq-p4vq2l

Use KroneckerSymbol in a sum:

https://wolfram.com/xid/0bto00wuqweq-gtwzef


https://wolfram.com/xid/0bto00wuqweq-041jh2


https://wolfram.com/xid/0bto00wuqweq-i66f2g

Applications (11)Sample problems that can be solved with this function
Basic Applications (2)
Number Theory (9)
For congruent integers m and n modulo p, KroneckerSymbol[m,p]==KroneckerSymbol[n,p]:

https://wolfram.com/xid/0bto00wuqweq-dbmikw


https://wolfram.com/xid/0bto00wuqweq-m7kvl2

Find Euler–Jacobi pseudoprimes to base : [more info]

https://wolfram.com/xid/0bto00wuqweq-cojb1p

https://wolfram.com/xid/0bto00wuqweq-h66s3f

The law of quadratic reciprocity for distinct primes n and m :

https://wolfram.com/xid/0bto00wuqweq-ercgj8

https://wolfram.com/xid/0bto00wuqweq-fl0dql


https://wolfram.com/xid/0bto00wuqweq-ugtc5

Construct eigenvectors of the discrete Fourier transform:

https://wolfram.com/xid/0bto00wuqweq-fmmr1y


https://wolfram.com/xid/0bto00wuqweq-jg44or

Evaluate Gauss sums in closed form:

https://wolfram.com/xid/0bto00wuqweq-nefum0

https://wolfram.com/xid/0bto00wuqweq-q0jkvn

The congruence equation has a solution if KroneckerSymbol[a,p] == 1:

https://wolfram.com/xid/0bto00wuqweq-dfgeyz


https://wolfram.com/xid/0bto00wuqweq-hs7spj

KroneckerSymbol[n,k] is a real DirichletCharacter modulo k for odd integers k:

https://wolfram.com/xid/0bto00wuqweq-k0h94z


https://wolfram.com/xid/0bto00wuqweq-ikrxpv

A real primitive character χ modulo k can be written in terms of KroneckerSymbol[χ[-1]k,n]:

https://wolfram.com/xid/0bto00wuqweq-nm1zl


https://wolfram.com/xid/0bto00wuqweq-ebfxtg

Nonprimitive real characters can be written in terms of KroneckerSymbol at integers coprime to k:

https://wolfram.com/xid/0bto00wuqweq-ftu2et


https://wolfram.com/xid/0bto00wuqweq-fzgbzy

KroneckerSymbol is the generalization of the Jacobi symbol for all integers:

https://wolfram.com/xid/0bto00wuqweq-fmnnm6

https://wolfram.com/xid/0bto00wuqweq-49qyus

Properties & Relations (5)Properties of the function, and connections to other functions
KroneckerSymbol gives for non-coprime integers:

https://wolfram.com/xid/0bto00wuqweq-bp8jdm


https://wolfram.com/xid/0bto00wuqweq-lq2898

KroneckerSymbol is a completely multiplicative function for each argument:

https://wolfram.com/xid/0bto00wuqweq-jrnqi6


https://wolfram.com/xid/0bto00wuqweq-biwgxu

The law of quadratic reciprocity for distinct primes n and m :

https://wolfram.com/xid/0bto00wuqweq-mwhaay

https://wolfram.com/xid/0bto00wuqweq-gdpsdl


https://wolfram.com/xid/0bto00wuqweq-bisjpg

Use KroneckerSymbol to compute real DirichletCharacter modulo k for odd integers k:

https://wolfram.com/xid/0bto00wuqweq-p85kl


https://wolfram.com/xid/0bto00wuqweq-c2oc3z

Check that the following relation holds for any odd integer:

https://wolfram.com/xid/0bto00wuqweq-fc0vsk

Neat Examples (4)Surprising or curious use cases
The array plot of KroneckerSymbol:

https://wolfram.com/xid/0bto00wuqweq-hdfirj

Plot the arguments of the Fourier transform of KroneckerSymbol:

https://wolfram.com/xid/0bto00wuqweq-d7etv5

Successive differences of KroneckerSymbol modulo 2:

https://wolfram.com/xid/0bto00wuqweq-j89uev

Plot the Ulam spiral of KroneckerSymbol:

https://wolfram.com/xid/0bto00wuqweq-xloq7k

https://wolfram.com/xid/0bto00wuqweq-gwe44e

Wolfram Research (2007), KroneckerSymbol, Wolfram Language function, https://reference.wolfram.com/language/ref/KroneckerSymbol.html.
Text
Wolfram Research (2007), KroneckerSymbol, Wolfram Language function, https://reference.wolfram.com/language/ref/KroneckerSymbol.html.
Wolfram Research (2007), KroneckerSymbol, Wolfram Language function, https://reference.wolfram.com/language/ref/KroneckerSymbol.html.
CMS
Wolfram Language. 2007. "KroneckerSymbol." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/KroneckerSymbol.html.
Wolfram Language. 2007. "KroneckerSymbol." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/KroneckerSymbol.html.
APA
Wolfram Language. (2007). KroneckerSymbol. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/KroneckerSymbol.html
Wolfram Language. (2007). KroneckerSymbol. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/KroneckerSymbol.html
BibTeX
@misc{reference.wolfram_2025_kroneckersymbol, author="Wolfram Research", title="{KroneckerSymbol}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/KroneckerSymbol.html}", note=[Accessed: 03-May-2025
]}
BibLaTeX
@online{reference.wolfram_2025_kroneckersymbol, organization={Wolfram Research}, title={KroneckerSymbol}, year={2007}, url={https://reference.wolfram.com/language/ref/KroneckerSymbol.html}, note=[Accessed: 03-May-2025
]}