LameSPrime
LameSPrime[ν,j,z,m]
gives the -derivative of the Lamé function of order with elliptic parameter .
Details
- Mathematical function, suitable for both symbolic and numerical manipulation.
- LameSPrime belongs to the Lamé class of functions.
- For certain special arguments, LameSPrime automatically evaluates to exact values.
- LameSPrime can be evaluated to arbitrary numerical precision for an arbitrary complex argument.
- LameSPrime automatically threads over lists.
- LameSPrime[ν,j,z,0]=-j Cos[j(-z)].
Examples
open allclose allBasic Examples (3)
Plot the LameSPrime function for and :
Series expansion of LameSPrime at the origin:
Scope (26)
Numerical Evaluation (5)
The precision of the output tracks the precision of the input:
LameSPrime can take complex number parameters and argument:
Evaluate LameSPrime efficiently at high precision:
Specific Values (3)
Value of LameSPrime when and :
Value of LameSPrime when and :
Some poles of LameSPrime:
For integer values of and , LameSPrime can be expressed entirely in terms of Jacobi elliptic functions:
Visualization (6)
Plot the first three even LameSPrime functions:
Plot the first three odd LameSPrime functions:
Plot the absolute value of the LameSPrime function for complex parameters:
Plot LameSPrime as a function of its first parameter :
Plot LameSPrime as a function of and elliptic parameter :
Plot the family of LameSPrime functions for different values of the elliptic parameter :
Function Properties (2)
When is even, LameSPrime is a periodic function of real argument with a period 2EllipticK[m]:
When is odd, LameSPrime is a periodic function of real argument with a period 4EllipticK[m] and has an initial value LameSPrime[ν,j,0,m]=0:
Differentiation (2)
The -derivative of LameSPrime involves the LameS function:
Derivatives of LameSPrime for specific cases of parameters:
Integration (3)
Indefinite integral of LameSPrime is LameS:
Definite numerical integrals of LameSPrime:
More integrals with LameSPrime:
Series Expansions (3)
Series expansion of LameSPrime at the origin:
Coefficient of the second term of this expansion:
Plot the first- and third-order approximations for LameSPrime around :
Series expansion for LameSPrime at any ordinary complex point:
Function Representations (2)
Applications (1)
Use the LameSPrime function to calculate the derivatives of LameS:
Properties & Relations (2)
LameSPrime is an even function when is an positive even integer:
LameSPrime is an odd function when is an positive odd integer:
Use FunctionExpand to expand LameSPrime for integer values of and :
Possible Issues (1)
LameSPrime is not defined if is a negative integer:
LameSPrime is not defined if is not an integer:
Text
Wolfram Research (2020), LameSPrime, Wolfram Language function, https://reference.wolfram.com/language/ref/LameSPrime.html.
CMS
Wolfram Language. 2020. "LameSPrime." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/LameSPrime.html.
APA
Wolfram Language. (2020). LameSPrime. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/LameSPrime.html