EllipticK
✖
EllipticK
Details

- Mathematical function, suitable for both symbolic and numerical manipulation.
- EllipticK is given in terms of the incomplete elliptic integral of the first kind by
.
- EllipticK[m] has a branch cut discontinuity in the complex m plane running from
to
.
- For certain special arguments, EllipticK automatically evaluates to exact values.
- EllipticK can be evaluated to arbitrary numerical precision.
- EllipticK automatically threads over lists.
- EllipticK can be used with Interval and CenteredInterval objects. »
Examples
open allclose allBasic Examples (5)Summary of the most common use cases

https://wolfram.com/xid/0e7ooerm-fy1s9a

Plot over a subset of the reals:

https://wolfram.com/xid/0e7ooerm-el2ern

Plot over a subset of the complexes:

https://wolfram.com/xid/0e7ooerm-kiedlx

Series expansion at the origin:

https://wolfram.com/xid/0e7ooerm-crmtmd

Series expansion at Infinity:

https://wolfram.com/xid/0e7ooerm-laddhh

Scope (38)Survey of the scope of standard use cases
Numerical Evaluation (5)

https://wolfram.com/xid/0e7ooerm-jg2h28

The precision of the output tracks the precision of the input:

https://wolfram.com/xid/0e7ooerm-cvhbc3

Evaluate numerically for complex arguments:

https://wolfram.com/xid/0e7ooerm-yk2

Evaluate EllipticK efficiently at high precision:

https://wolfram.com/xid/0e7ooerm-di5gcr


https://wolfram.com/xid/0e7ooerm-bq2c6r

Compute worst-case guaranteed intervals using Interval and CenteredInterval objects:

https://wolfram.com/xid/0e7ooerm-gm995c


https://wolfram.com/xid/0e7ooerm-cmdnbi

Or compute average-case statistical intervals using Around:

https://wolfram.com/xid/0e7ooerm-cw18bq

Compute the elementwise values of an array:

https://wolfram.com/xid/0e7ooerm-thgd2

Or compute the matrix EllipticK function using MatrixFunction:

https://wolfram.com/xid/0e7ooerm-o5jpo

Specific Values (5)
Simple exact values are generated automatically:

https://wolfram.com/xid/0e7ooerm-cfuygx

Some exact values in terms of Gamma after applying FunctionExpand:

https://wolfram.com/xid/0e7ooerm-hzrfoj

Find directional limiting values at branch cuts:

https://wolfram.com/xid/0e7ooerm-iasiu4


https://wolfram.com/xid/0e7ooerm-okkyj3


https://wolfram.com/xid/0e7ooerm-bdij6w

Find the root of the equation :

https://wolfram.com/xid/0e7ooerm-f2hrld


https://wolfram.com/xid/0e7ooerm-jegwkj

Visualization (2)
Plot EllipticK:

https://wolfram.com/xid/0e7ooerm-ecj8m7


https://wolfram.com/xid/0e7ooerm-lmzfrf


https://wolfram.com/xid/0e7ooerm-co5mrt

Function Properties (9)
EllipticK is defined for all real values less than 1:

https://wolfram.com/xid/0e7ooerm-cl7ele

EllipticK takes all real positive values:

https://wolfram.com/xid/0e7ooerm-evf2yr

EllipticK is not an analytic function:

https://wolfram.com/xid/0e7ooerm-h5x4l2

Has both singularities and discontinuities:

https://wolfram.com/xid/0e7ooerm-mdtl3h


https://wolfram.com/xid/0e7ooerm-mn5jws

EllipticK is not a meromorphic function:

https://wolfram.com/xid/0e7ooerm-l9hj76

EllipticK is nondecreasing on its domain:

https://wolfram.com/xid/0e7ooerm-nlz7s

EllipticK is injective:

https://wolfram.com/xid/0e7ooerm-poz8g


https://wolfram.com/xid/0e7ooerm-ctca0g

EllipticK is not surjective:

https://wolfram.com/xid/0e7ooerm-cxk3a6


https://wolfram.com/xid/0e7ooerm-frlnsr

EllipticK is non-negative on its domain:

https://wolfram.com/xid/0e7ooerm-84dui

EllipticK is convex on its domain:

https://wolfram.com/xid/0e7ooerm-8kku21

Differentiation (3)

https://wolfram.com/xid/0e7ooerm-mmas49


https://wolfram.com/xid/0e7ooerm-nfbe0l


https://wolfram.com/xid/0e7ooerm-fuzyd6


https://wolfram.com/xid/0e7ooerm-nig1uv

Integration (3)
Indefinite integral of EllipticK:

https://wolfram.com/xid/0e7ooerm-bponid

Definite integral over an interval lying on the branch cut:

https://wolfram.com/xid/0e7ooerm-bo0zm6


https://wolfram.com/xid/0e7ooerm-jcfk61


https://wolfram.com/xid/0e7ooerm-muvmkf

Series Expansions (3)
Taylor expansion for EllipticK:

https://wolfram.com/xid/0e7ooerm-ewr1h8

Plot the first three approximations for EllipticK around :

https://wolfram.com/xid/0e7ooerm-binhar

Series expansions at branch points:

https://wolfram.com/xid/0e7ooerm-b62ffq

EllipticK can be applied to power series:

https://wolfram.com/xid/0e7ooerm-e4s3cf

Integral Transforms (3)
Compute the Laplace transform using LaplaceTransform:

https://wolfram.com/xid/0e7ooerm-d7r6v4


https://wolfram.com/xid/0e7ooerm-eqbky1


https://wolfram.com/xid/0e7ooerm-7mn4u

Function Representations (5)
Relation to other elliptic integrals:

https://wolfram.com/xid/0e7ooerm-dy82qg


https://wolfram.com/xid/0e7ooerm-cml0qj

Relation to the LegendreP:

https://wolfram.com/xid/0e7ooerm-k8bx14

Represent in terms of MeijerG using MeijerGReduce:

https://wolfram.com/xid/0e7ooerm-e1b67p


https://wolfram.com/xid/0e7ooerm-b33lgc

EllipticK can be represented as a DifferentialRoot:

https://wolfram.com/xid/0e7ooerm-bgjnbg

TraditionalForm formatting:

https://wolfram.com/xid/0e7ooerm-k24z50

Applications (7)Sample problems that can be solved with this function
Small-angle approximation to the period of a pendulum:

https://wolfram.com/xid/0e7ooerm-bveji5

Plot the period versus the initial angle:

https://wolfram.com/xid/0e7ooerm-erjyel

Vector potential due to a circular current flow, in cylindrical coordinates:

https://wolfram.com/xid/0e7ooerm-zoxoa
The components of the magnetic field:

https://wolfram.com/xid/0e7ooerm-bu2wd7


https://wolfram.com/xid/0e7ooerm-elt4c6

Plot the magnitude of the magnetic field:

https://wolfram.com/xid/0e7ooerm-qcw24

Resistance between the origin and the point in an infinite 3D lattice of unit resistors:

https://wolfram.com/xid/0e7ooerm-jd7ddr

https://wolfram.com/xid/0e7ooerm-irxcjg

Energy for the Onsager solution of the Ising model:

https://wolfram.com/xid/0e7ooerm-ihgp9x

https://wolfram.com/xid/0e7ooerm-cspo98

Find the critical temperature:

https://wolfram.com/xid/0e7ooerm-eacjy


https://wolfram.com/xid/0e7ooerm-8jprv


https://wolfram.com/xid/0e7ooerm-hgrz7

Current flow in a rectangular conducting sheet with voltage applied at a pair of opposite corners:

https://wolfram.com/xid/0e7ooerm-vc9tw
Plot the flow lines with bounds defined via EllipticK:

https://wolfram.com/xid/0e7ooerm-rxs56

Construct lowpass elliptic filter for analog signal:

https://wolfram.com/xid/0e7ooerm-bxw8jc
Compute filter ripple parameters and associate elliptic function parameter:

https://wolfram.com/xid/0e7ooerm-bm1kjg
Use elliptic degree equation to find the ratio of the pass and the stop frequencies:

https://wolfram.com/xid/0e7ooerm-b13u0f

Compute corresponding stop frequency and elliptic parameters:

https://wolfram.com/xid/0e7ooerm-wtjxg

Compute ripple locations and poles and zeros of the transfer function:

https://wolfram.com/xid/0e7ooerm-kvrem
Compute poles of the transfer function:

https://wolfram.com/xid/0e7ooerm-elkxl1
Assemble the transfer function:

https://wolfram.com/xid/0e7ooerm-fyal2v

https://wolfram.com/xid/0e7ooerm-bv4lrk

Compare with the result of EllipticFilterModel:

https://wolfram.com/xid/0e7ooerm-00j7s

https://wolfram.com/xid/0e7ooerm-ef2b35

Properties & Relations (4)Properties of the function, and connections to other functions
This shows the branch cuts of the EllipticK function:

https://wolfram.com/xid/0e7ooerm-guz5j

Numerically find a root of a transcendental equation:

https://wolfram.com/xid/0e7ooerm-7qwnc

Solve a differential equation:

https://wolfram.com/xid/0e7ooerm-cidt66

EllipticK is a particular case of various mathematical functions:

https://wolfram.com/xid/0e7ooerm-csy6db

Possible Issues (3)Common pitfalls and unexpected behavior
Machine-precision evaluation can result in numerically inaccurate answers near branch cuts:

https://wolfram.com/xid/0e7ooerm-llt4w


https://wolfram.com/xid/0e7ooerm-bnko5x

The defining integral converges only under additional conditions:

https://wolfram.com/xid/0e7ooerm-b7kr8t

Different argument conventions exist that result in modified results:

https://wolfram.com/xid/0e7ooerm-eecbzs

Neat Examples (2)Surprising or curious use cases
Probability that a random walker in a 3D cubic lattice returns to the origin:

https://wolfram.com/xid/0e7ooerm-es3h5p

Carry out a modeling run of 1000 walks and count how many it returns to the origin:

https://wolfram.com/xid/0e7ooerm-b3nl4n

Compare with the expected count at :

https://wolfram.com/xid/0e7ooerm-berj2o


https://wolfram.com/xid/0e7ooerm-nujfsc

Wolfram Research (1988), EllipticK, Wolfram Language function, https://reference.wolfram.com/language/ref/EllipticK.html (updated 2022).
Text
Wolfram Research (1988), EllipticK, Wolfram Language function, https://reference.wolfram.com/language/ref/EllipticK.html (updated 2022).
Wolfram Research (1988), EllipticK, Wolfram Language function, https://reference.wolfram.com/language/ref/EllipticK.html (updated 2022).
CMS
Wolfram Language. 1988. "EllipticK." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2022. https://reference.wolfram.com/language/ref/EllipticK.html.
Wolfram Language. 1988. "EllipticK." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2022. https://reference.wolfram.com/language/ref/EllipticK.html.
APA
Wolfram Language. (1988). EllipticK. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/EllipticK.html
Wolfram Language. (1988). EllipticK. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/EllipticK.html
BibTeX
@misc{reference.wolfram_2025_elliptick, author="Wolfram Research", title="{EllipticK}", year="2022", howpublished="\url{https://reference.wolfram.com/language/ref/EllipticK.html}", note=[Accessed: 26-March-2025
]}
BibLaTeX
@online{reference.wolfram_2025_elliptick, organization={Wolfram Research}, title={EllipticK}, year={2022}, url={https://reference.wolfram.com/language/ref/EllipticK.html}, note=[Accessed: 26-March-2025
]}