# MachineNumberQ

MachineNumberQ[expr]

returns True if expr is a machineprecision real or complex number, and returns False otherwise.

# Examples

open allclose all

## Basic Examples(1)

Check whether numbers are machine numbers or not:

## Scope(1)

Complex numbers:

Complex numbers are only considered machine numbers if both real and imaginary parts are machine numbers:

## Applications(1)

Solve a differential equation, stopping when out of the range of machine numbers:

## Properties & Relations(1)

Any machine number has precision given as MachinePrecision:

## Possible Issues(1)

Subnormal machine numbers are MachineNumberQ:

However, they effectively have less precision than MachinePrecision and have the same uncertainty as \$MinMachineNumber:

Wolfram Research (1991), MachineNumberQ, Wolfram Language function, https://reference.wolfram.com/language/ref/MachineNumberQ.html.

#### Text

Wolfram Research (1991), MachineNumberQ, Wolfram Language function, https://reference.wolfram.com/language/ref/MachineNumberQ.html.

#### CMS

Wolfram Language. 1991. "MachineNumberQ." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/MachineNumberQ.html.

#### APA

Wolfram Language. (1991). MachineNumberQ. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/MachineNumberQ.html

#### BibTeX

@misc{reference.wolfram_2024_machinenumberq, author="Wolfram Research", title="{MachineNumberQ}", year="1991", howpublished="\url{https://reference.wolfram.com/language/ref/MachineNumberQ.html}", note=[Accessed: 24-July-2024 ]}

#### BibLaTeX

@online{reference.wolfram_2024_machinenumberq, organization={Wolfram Research}, title={MachineNumberQ}, year={1991}, url={https://reference.wolfram.com/language/ref/MachineNumberQ.html}, note=[Accessed: 24-July-2024 ]}