MathieuS
MathieuS[a,q,z]
gives the odd Mathieu function with characteristic value a and parameter q.
Details
- Mathematical function, suitable for both symbolic and numerical manipulation.
- The Mathieu functions satisfy the equation .
- For certain special arguments, MathieuS automatically evaluates to exact values.
- MathieuS can be evaluated to arbitrary numerical precision.
- MathieuS automatically threads over lists.
Examples
open allclose allBasic Examples (4)
Scope (19)
Numerical Evaluation (4)
Evaluate numerically to high precision:
The precision of the output tracks the precision of the input:
Evaluate for complex arguments and parameters:
Evaluate MathieuS efficiently at high precision:
Compute the elementwise values of an array:
Or compute the matrix MathieuS function using MatrixFunction:
Specific Values (3)
Simple exact values are generated automatically:
Find a local maximum as the root of in the maximum's neighborhood:
MathieuS is an odd function:
Visualization (3)
Function Properties (4)
Differentiation (3)
Applications (3)
This differential equation is solved in terms of MathieuC and MathieuS functions:
Solve the Schrödinger equation with periodic potential:
By the Bloch theorem, solutions are bounded provided is within an energy band. The energy gap corresponds to a range of where MathieuCharacteristicExponent has a non-vanishing imaginary part:
Solve the Laplace equation in an ellipse using separation of variables:
This plots an eigenfunction. It vanishes at the ellipse boundary:
Text
Wolfram Research (1996), MathieuS, Wolfram Language function, https://reference.wolfram.com/language/ref/MathieuS.html.
CMS
Wolfram Language. 1996. "MathieuS." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/MathieuS.html.
APA
Wolfram Language. (1996). MathieuS. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/MathieuS.html