MathieuCharacteristicB
✖
MathieuCharacteristicB
gives the characteristic value for odd Mathieu functions with characteristic exponent r and parameter q.
Details

- Mathematical function, suitable for both symbolic and numerical manipulation.
- The characteristic value
gives the value of the parameter
in
for which the solution has the form
where
is an odd function of
with period
.
- When r is not a real integer, MathieuCharacteristicB gives the same results as MathieuCharacteristicA.
- For certain special arguments, MathieuCharacteristicB automatically evaluates to exact values.
- MathieuCharacteristicB can be evaluated to arbitrary numerical precision.
- MathieuCharacteristicB automatically threads over lists.
Examples
open allclose allBasic Examples (3)Summary of the most common use cases
Scope (19)Survey of the scope of standard use cases
Numerical Evaluation (6)

https://wolfram.com/xid/0gfpqt5nhsbp-l274ju


https://wolfram.com/xid/0gfpqt5nhsbp-cksbl4


https://wolfram.com/xid/0gfpqt5nhsbp-b0wt9

The precision of the output tracks the precision of the input:

https://wolfram.com/xid/0gfpqt5nhsbp-y7k4a


https://wolfram.com/xid/0gfpqt5nhsbp-hfml09

Evaluate efficiently at high precision:

https://wolfram.com/xid/0gfpqt5nhsbp-di5gcr


https://wolfram.com/xid/0gfpqt5nhsbp-bq2c6r

Compute average-case statistical intervals using Around:

https://wolfram.com/xid/0gfpqt5nhsbp-cw18bq

Compute the elementwise values of an array:

https://wolfram.com/xid/0gfpqt5nhsbp-thgd2

Or compute the matrix MathieuCharacteristicB function using MatrixFunction:

https://wolfram.com/xid/0gfpqt5nhsbp-o5jpo

Specific Values (2)
Simple exact values are generated automatically:

https://wolfram.com/xid/0gfpqt5nhsbp-bmqd0y

Find the positive maximum of MathieuCharacteristicB[3,q]:

https://wolfram.com/xid/0gfpqt5nhsbp-f2hrld


https://wolfram.com/xid/0gfpqt5nhsbp-bqf3y

Visualization (3)
Plot the MathieuCharacteristicB function for integer parameters:

https://wolfram.com/xid/0gfpqt5nhsbp-ecj8m7

Plot the MathieuCharacteristicB function for noninteger parameters:

https://wolfram.com/xid/0gfpqt5nhsbp-b1j98m

Plot the real part of MathieuCharacteristicB:

https://wolfram.com/xid/0gfpqt5nhsbp-cjk9wl

Plot the imaginary part of MathieuCharacteristicB:

https://wolfram.com/xid/0gfpqt5nhsbp-jujkdc

Function Properties (6)
The real domain of MathieuCharacteristicB:

https://wolfram.com/xid/0gfpqt5nhsbp-jitxhe


https://wolfram.com/xid/0gfpqt5nhsbp-m29jj1

is neither non-increasing nor non-decreasing:

https://wolfram.com/xid/0gfpqt5nhsbp-xhpqv5


https://wolfram.com/xid/0gfpqt5nhsbp-eljl3o


https://wolfram.com/xid/0gfpqt5nhsbp-d29icx

MathieuCharacteristicB threads elementwise over lists:

https://wolfram.com/xid/0gfpqt5nhsbp-ysgfug

TraditionalForm formatting:

https://wolfram.com/xid/0gfpqt5nhsbp-cpcvv4

Series Expansions (2)
Find the Taylor expansion using Series:

https://wolfram.com/xid/0gfpqt5nhsbp-ewr1h8

Plots of the first three approximations around :

https://wolfram.com/xid/0gfpqt5nhsbp-binhar

Find the series expansion at infinity:

https://wolfram.com/xid/0gfpqt5nhsbp-jwxla7

Applications (4)Sample problems that can be solved with this function
Symmetric periodic solutions of the Mathieu differential equation:

https://wolfram.com/xid/0gfpqt5nhsbp-gbpcnu

This shows the stability diagram for the Mathieu equation:

https://wolfram.com/xid/0gfpqt5nhsbp-bwxcw2

As a function of the first argument, MathieuCharacteristicB is a piecewise continuous function (called bands and band gaps in solid-state physics):

https://wolfram.com/xid/0gfpqt5nhsbp-f1cz69

Solve the Laplace equation in an ellipse using separation of variables:

https://wolfram.com/xid/0gfpqt5nhsbp-v8ojo

https://wolfram.com/xid/0gfpqt5nhsbp-dg5z3

This plots an eigenfunction. It vanishes at the ellipse boundary:

https://wolfram.com/xid/0gfpqt5nhsbp-jz6sc

Possible Issues (1)Common pitfalls and unexpected behavior
There is no zero-order MathieuCharacteristicB:

https://wolfram.com/xid/0gfpqt5nhsbp-dwy1z0


Wolfram Research (1996), MathieuCharacteristicB, Wolfram Language function, https://reference.wolfram.com/language/ref/MathieuCharacteristicB.html.
Text
Wolfram Research (1996), MathieuCharacteristicB, Wolfram Language function, https://reference.wolfram.com/language/ref/MathieuCharacteristicB.html.
Wolfram Research (1996), MathieuCharacteristicB, Wolfram Language function, https://reference.wolfram.com/language/ref/MathieuCharacteristicB.html.
CMS
Wolfram Language. 1996. "MathieuCharacteristicB." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/MathieuCharacteristicB.html.
Wolfram Language. 1996. "MathieuCharacteristicB." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/MathieuCharacteristicB.html.
APA
Wolfram Language. (1996). MathieuCharacteristicB. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/MathieuCharacteristicB.html
Wolfram Language. (1996). MathieuCharacteristicB. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/MathieuCharacteristicB.html
BibTeX
@misc{reference.wolfram_2025_mathieucharacteristicb, author="Wolfram Research", title="{MathieuCharacteristicB}", year="1996", howpublished="\url{https://reference.wolfram.com/language/ref/MathieuCharacteristicB.html}", note=[Accessed: 17-May-2025
]}
BibLaTeX
@online{reference.wolfram_2025_mathieucharacteristicb, organization={Wolfram Research}, title={MathieuCharacteristicB}, year={1996}, url={https://reference.wolfram.com/language/ref/MathieuCharacteristicB.html}, note=[Accessed: 17-May-2025
]}