ParametricFunction
✖
ParametricFunction
represents a function that computes a solution when evaluated with numerical values for the parameters pars.
Details

- ParametricFunction is generated by ParametricNDSolve and ParametricNDSolveValue.
- A ParametricFunction object pfun is evaluated by using pfun[pvals] where pvals are explicit numerical values for the parameters pars.
- A ParametricFunction may return numbers, functions, or more complicated expressions based on the underlying computation.
- Derivatives of ParametricFunction are computed using a combination of symbolic and numerical sensitivity methods when possible.
Examples
Basic Examples (1)Summary of the most common use cases
Parameters for a harmonic oscillator:

https://wolfram.com/xid/0d6f0czceq-e01vz

With numerical values, an approximate function is returned:

https://wolfram.com/xid/0d6f0czceq-rfghk


https://wolfram.com/xid/0d6f0czceq-ecg8we

Derivatives of the ParametricFunction give the sensitivity solutions:

https://wolfram.com/xid/0d6f0czceq-r39sz

Wolfram Research (2012), ParametricFunction, Wolfram Language function, https://reference.wolfram.com/language/ref/ParametricFunction.html.
Text
Wolfram Research (2012), ParametricFunction, Wolfram Language function, https://reference.wolfram.com/language/ref/ParametricFunction.html.
Wolfram Research (2012), ParametricFunction, Wolfram Language function, https://reference.wolfram.com/language/ref/ParametricFunction.html.
CMS
Wolfram Language. 2012. "ParametricFunction." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/ParametricFunction.html.
Wolfram Language. 2012. "ParametricFunction." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/ParametricFunction.html.
APA
Wolfram Language. (2012). ParametricFunction. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ParametricFunction.html
Wolfram Language. (2012). ParametricFunction. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ParametricFunction.html
BibTeX
@misc{reference.wolfram_2025_parametricfunction, author="Wolfram Research", title="{ParametricFunction}", year="2012", howpublished="\url{https://reference.wolfram.com/language/ref/ParametricFunction.html}", note=[Accessed: 29-March-2025
]}
BibLaTeX
@online{reference.wolfram_2025_parametricfunction, organization={Wolfram Research}, title={ParametricFunction}, year={2012}, url={https://reference.wolfram.com/language/ref/ParametricFunction.html}, note=[Accessed: 29-March-2025
]}