gives the product of permutations a, b, c.



open allclose all

Basic Examples  (1)

Product of two permutations:

Multiplication of permutations is not commutative:

Scope  (4)

PermutationProduct works with any number of permutations, of any degree:

Product of a single permutation:

Multiplication with the identity permutation:

This gives the identity permutation:

Generalizations & Extensions  (3)

PermutationProduct performs some simplifications with symbolic arguments:

Perform intermediate products:

From the product and inversion in a group, it is possible to define commutation and conjugation as follows. Use this abbreviation:


Two permutations commute if and only if their commutator is the identity:

Commutation can be recursively generalized to more arguments:

Check some well-known commutation relations:

Properties & Relations  (5)

Multiplication with the inverse permutation returns the identity:

Any cycle of length is equivalent to a product of transpositions (cycles of length 2) all having the same first point:

Multiplication of permutation lists is equivalent to Part but reversing the order:

Repeated multiplication of a single permutation can be computed with PermutationPower:

The product of all elements of a group depends on the order in which the product is computed:

For an Abelian group, the result is unique. In particular, for a cyclic group the result is very simple:

The result is simply this power of the generator of the cyclic group:

Possible Issues  (1)

PermutationProduct[x] returns x, irrespectively of what x is:

Wolfram Research (2010), PermutationProduct, Wolfram Language function,


Wolfram Research (2010), PermutationProduct, Wolfram Language function,


Wolfram Language. 2010. "PermutationProduct." Wolfram Language & System Documentation Center. Wolfram Research.


Wolfram Language. (2010). PermutationProduct. Wolfram Language & System Documentation Center. Retrieved from


@misc{reference.wolfram_2024_permutationproduct, author="Wolfram Research", title="{PermutationProduct}", year="2010", howpublished="\url{}", note=[Accessed: 24-July-2024 ]}


@online{reference.wolfram_2024_permutationproduct, organization={Wolfram Research}, title={PermutationProduct}, year={2010}, url={}, note=[Accessed: 24-July-2024 ]}