WOLFRAM

gives the product of permutations a, b, c.

Details

Examples

open allclose all

Basic Examples  (1)Summary of the most common use cases

Product of two permutations:

Out[1]=1

Multiplication of permutations is not commutative:

Out[2]=2

Scope  (4)Survey of the scope of standard use cases

PermutationProduct works with any number of permutations, of any degree:

Out[1]=1

Product of a single permutation:

Out[1]=1

Multiplication with the identity permutation:

Out[1]=1

This gives the identity permutation:

Out[1]=1

Generalizations & Extensions  (3)Generalized and extended use cases

PermutationProduct performs some simplifications with symbolic arguments:

Out[1]=1
Out[2]=2
Out[3]=3

Perform intermediate products:

Out[1]=1

From the product and inversion in a group, it is possible to define commutation and conjugation as follows. Use this abbreviation:

Define:

Two permutations commute if and only if their commutator is the identity:

Out[4]=4

Commutation can be recursively generalized to more arguments:

Check some well-known commutation relations:

Out[6]=6
Out[7]=7

Properties & Relations  (5)Properties of the function, and connections to other functions

Multiplication with the inverse permutation returns the identity:

Out[1]=1
Out[2]=2
Out[3]=3

Any cycle of length is equivalent to a product of transpositions (cycles of length 2) all having the same first point:

Out[1]=1

Multiplication of permutation lists is equivalent to Part but reversing the order:

Out[1]=1
Out[1]=1
Out[2]=2
Out[3]=3

Repeated multiplication of a single permutation can be computed with PermutationPower:

Out[2]=2

The product of all elements of a group depends on the order in which the product is computed:

Out[1]=1
Out[2]=2
Out[3]=3
Out[4]=4

For an Abelian group, the result is unique. In particular, for a cyclic group the result is very simple:

Out[5]=5
Out[6]=6
Out[7]=7

The result is simply this power of the generator of the cyclic group:

Out[8]=8

Possible Issues  (1)Common pitfalls and unexpected behavior

PermutationProduct[x] returns x, irrespectively of what x is:

Out[1]=1
Wolfram Research (2010), PermutationProduct, Wolfram Language function, https://reference.wolfram.com/language/ref/PermutationProduct.html.
Wolfram Research (2010), PermutationProduct, Wolfram Language function, https://reference.wolfram.com/language/ref/PermutationProduct.html.

Text

Wolfram Research (2010), PermutationProduct, Wolfram Language function, https://reference.wolfram.com/language/ref/PermutationProduct.html.

Wolfram Research (2010), PermutationProduct, Wolfram Language function, https://reference.wolfram.com/language/ref/PermutationProduct.html.

CMS

Wolfram Language. 2010. "PermutationProduct." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/PermutationProduct.html.

Wolfram Language. 2010. "PermutationProduct." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/PermutationProduct.html.

APA

Wolfram Language. (2010). PermutationProduct. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/PermutationProduct.html

Wolfram Language. (2010). PermutationProduct. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/PermutationProduct.html

BibTeX

@misc{reference.wolfram_2025_permutationproduct, author="Wolfram Research", title="{PermutationProduct}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/PermutationProduct.html}", note=[Accessed: 29-March-2025 ]}

@misc{reference.wolfram_2025_permutationproduct, author="Wolfram Research", title="{PermutationProduct}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/PermutationProduct.html}", note=[Accessed: 29-March-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_permutationproduct, organization={Wolfram Research}, title={PermutationProduct}, year={2010}, url={https://reference.wolfram.com/language/ref/PermutationProduct.html}, note=[Accessed: 29-March-2025 ]}

@online{reference.wolfram_2025_permutationproduct, organization={Wolfram Research}, title={PermutationProduct}, year={2010}, url={https://reference.wolfram.com/language/ref/PermutationProduct.html}, note=[Accessed: 29-March-2025 ]}