RealValuedNumericQ
✖
RealValuedNumericQ
gives True if expr is a real-valued numeric quantity, and False otherwise.
Details

- RealValuedNumericQ[expr] gives True whenever N[expr] would yield an explicit number with head Real. »
- RealValuedNumericQ[Infinity] gives False. »
- RealValuedNumericQ[Overflow[]] and NumberQ[Underflow[]] give True. »
Examples
open allclose allBasic Examples (2)Summary of the most common use cases
RealValuedNumericQ tests whether an object is a real-valued numeric quantity:

https://wolfram.com/xid/0cps1p6cvysqwz-jow3ul

RealValuedNumericQ[expr] gives True whenever N[expr] yields a number with head Real:

https://wolfram.com/xid/0cps1p6cvysqwz-lmj1il


https://wolfram.com/xid/0cps1p6cvysqwz-l7m3i7

A general symbolic expression is not a real-valued numeric quantity:

https://wolfram.com/xid/0cps1p6cvysqwz-wdffbp

Scope (9)Survey of the scope of standard use cases
Integers and rationals are real-valued numeric quantities:

https://wolfram.com/xid/0cps1p6cvysqwz-yjfqow


https://wolfram.com/xid/0cps1p6cvysqwz-vg6efa

Approximate reals are real-valued numeric quantities:

https://wolfram.com/xid/0cps1p6cvysqwz-s9qsli


https://wolfram.com/xid/0cps1p6cvysqwz-s530m

RealValuedNumericQ gives True for real-valued mathematical constants:

https://wolfram.com/xid/0cps1p6cvysqwz-dqawgg


https://wolfram.com/xid/0cps1p6cvysqwz-r2bte

RealValuedNumericQ gives True for exact expressions representing real values:

https://wolfram.com/xid/0cps1p6cvysqwz-3qc2tf


https://wolfram.com/xid/0cps1p6cvysqwz-5lnsqz

Complex numbers are not real-valued quantities:

https://wolfram.com/xid/0cps1p6cvysqwz-0vmaxl

Exact complex quantities whose imaginary part is zero are real valued:

https://wolfram.com/xid/0cps1p6cvysqwz-jbt6qr

The number has a real part of and an imaginary part of
:

https://wolfram.com/xid/0cps1p6cvysqwz-4yt4le

Approximate complex numbers are not considered real valued even if their imaginary part equals zero:

https://wolfram.com/xid/0cps1p6cvysqwz-sprodj


https://wolfram.com/xid/0cps1p6cvysqwz-4plx4b


https://wolfram.com/xid/0cps1p6cvysqwz-2dq4iq

RealValuedNumericQ[Infinity] gives False:

https://wolfram.com/xid/0cps1p6cvysqwz-h33pgt

RealValuedNumericQ[Overflow[]] and RealValuedNumericQ[Underflow[]] give True:

https://wolfram.com/xid/0cps1p6cvysqwz-d32kih




https://wolfram.com/xid/0cps1p6cvysqwz-d0gko

They are both treated as Real:

https://wolfram.com/xid/0cps1p6cvysqwz-hqoir5

Properties & Relations (3)Properties of the function, and connections to other functions
If Head[N[x]] is Real, then RealValuedNumericQ[x] is True:

https://wolfram.com/xid/0cps1p6cvysqwz-eqnb88

It is possible for RealValuedNumericQ[x] to be True and for N[x] to have head Complex:

https://wolfram.com/xid/0cps1p6cvysqwz-ehhqln

This indicates that x has an imaginary part that is exactly zero:

https://wolfram.com/xid/0cps1p6cvysqwz-sxum3u

If RealValuedNumberQ[x] is True, then RealValuedNumericQ[x] is also True:

https://wolfram.com/xid/0cps1p6cvysqwz-qj1zbn

Possible Issues (2)Common pitfalls and unexpected behavior
Exact quantities whose imaginary parts vanish may not be identified by RealValuedNumericQ:

https://wolfram.com/xid/0cps1p6cvysqwz-njkwey

If detecting such numbers is important, simplify the expression before testing it:

https://wolfram.com/xid/0cps1p6cvysqwz-i6blxm

An exact number and its numerical approximation may give different results for RealValuedNumericQ:

https://wolfram.com/xid/0cps1p6cvysqwz-l1grhz

It is not possible to determine if the number is real, as its imaginary part is only approximately zero:

https://wolfram.com/xid/0cps1p6cvysqwz-4aewp9

Wolfram Research (2023), RealValuedNumericQ, Wolfram Language function, https://reference.wolfram.com/language/ref/RealValuedNumericQ.html.
Text
Wolfram Research (2023), RealValuedNumericQ, Wolfram Language function, https://reference.wolfram.com/language/ref/RealValuedNumericQ.html.
Wolfram Research (2023), RealValuedNumericQ, Wolfram Language function, https://reference.wolfram.com/language/ref/RealValuedNumericQ.html.
CMS
Wolfram Language. 2023. "RealValuedNumericQ." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/RealValuedNumericQ.html.
Wolfram Language. 2023. "RealValuedNumericQ." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/RealValuedNumericQ.html.
APA
Wolfram Language. (2023). RealValuedNumericQ. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/RealValuedNumericQ.html
Wolfram Language. (2023). RealValuedNumericQ. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/RealValuedNumericQ.html
BibTeX
@misc{reference.wolfram_2025_realvaluednumericq, author="Wolfram Research", title="{RealValuedNumericQ}", year="2023", howpublished="\url{https://reference.wolfram.com/language/ref/RealValuedNumericQ.html}", note=[Accessed: 19-May-2025
]}
BibLaTeX
@online{reference.wolfram_2025_realvaluednumericq, organization={Wolfram Research}, title={RealValuedNumericQ}, year={2023}, url={https://reference.wolfram.com/language/ref/RealValuedNumericQ.html}, note=[Accessed: 19-May-2025
]}