WOLFRAM

gives a string corresponding to the Roman numeral form of the integer n.

Details

  • Roman numerals are formed using combinations of the letters I, V, X, L, C, D, and M.
  • The number 0 is represented as the numeral "N", the initial letter of the word nulla.
  • RomanNumeral[n] for a negative integer n produces the result corresponding to the absolute value of n.
  • For numbers above 4999, specifications for overbars are inserted into the string given as the result.

Examples

open allclose all

Basic Examples  (2)Summary of the most common use cases

Roman numeral corresponding to the number 2023:

Out[1]=1

Convert a list of integers into their Roman numerals:

Out[1]=1
Out[2]=2

Scope  (5)Survey of the scope of standard use cases

Roman numerals are constructed using the letters I, V, X, L, C, D, and M:

Out[1]=1

The integer 0 is represented using the numeral "N". No other Roman numeral contains the letter N:

Out[1]=1

Beginning with 5000, integers have an overbar in their representation:

Out[1]=1

Each additional factor of 1000 adds another overbar:

Out[2]=2

Signs are ignored:

Out[1]=1

RomanNumeral threads automatically over lists of integers:

Out[1]=1

Properties & Relations  (4)Properties of the function, and connections to other functions

RomanNumeral returns strings in uppercase. Use ToLowerCase to convert to lowercase:

Out[1]=1
Out[2]=2

These are the possible repetitions and their counts in the first 4999 Roman numerals:

Out[1]=1

FromRomanNumeral converts a Roman numeral into its integer decimal form:

Out[1]=1
Out[2]=2

RomanNumeral[n] is equivalent to IntegerString[n,"Roman"]:

Out[1]=1
Out[2]=2
Wolfram Research (2015), RomanNumeral, Wolfram Language function, https://reference.wolfram.com/language/ref/RomanNumeral.html.
Wolfram Research (2015), RomanNumeral, Wolfram Language function, https://reference.wolfram.com/language/ref/RomanNumeral.html.

Text

Wolfram Research (2015), RomanNumeral, Wolfram Language function, https://reference.wolfram.com/language/ref/RomanNumeral.html.

Wolfram Research (2015), RomanNumeral, Wolfram Language function, https://reference.wolfram.com/language/ref/RomanNumeral.html.

CMS

Wolfram Language. 2015. "RomanNumeral." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/RomanNumeral.html.

Wolfram Language. 2015. "RomanNumeral." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/RomanNumeral.html.

APA

Wolfram Language. (2015). RomanNumeral. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/RomanNumeral.html

Wolfram Language. (2015). RomanNumeral. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/RomanNumeral.html

BibTeX

@misc{reference.wolfram_2025_romannumeral, author="Wolfram Research", title="{RomanNumeral}", year="2015", howpublished="\url{https://reference.wolfram.com/language/ref/RomanNumeral.html}", note=[Accessed: 07-June-2025 ]}

@misc{reference.wolfram_2025_romannumeral, author="Wolfram Research", title="{RomanNumeral}", year="2015", howpublished="\url{https://reference.wolfram.com/language/ref/RomanNumeral.html}", note=[Accessed: 07-June-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_romannumeral, organization={Wolfram Research}, title={RomanNumeral}, year={2015}, url={https://reference.wolfram.com/language/ref/RomanNumeral.html}, note=[Accessed: 07-June-2025 ]}

@online{reference.wolfram_2025_romannumeral, organization={Wolfram Research}, title={RomanNumeral}, year={2015}, url={https://reference.wolfram.com/language/ref/RomanNumeral.html}, note=[Accessed: 07-June-2025 ]}