Number Digits
The Wolfram Language can handle numbers of essentially unlimited length, in any base, using state-of-the-art platform-optimized algorithms, including several developed at Wolfram Research. For rational numbers, it uses number theoretic methods to efficiently find the exact forms of repeating digit sequences.
IntegerDigits — digits of an integer
RealDigits — digits of a real number
FromDigits — reconstruct a number from its digits
IntegerLength — total number of digits in an integer
DigitCount — count the number of occurrences of given digits
DigitSum — sum the digits of an integer
NumberDigit — extract a particular digit in a number
IntegerReverse — integer obtained by reversing digits
IntegerExponent ▪ MantissaExponent ▪ IntegerPart ▪ Log10 ▪ Log2
NumberExpand — give a number expanded in positional notation
IntegerString — digits of an integer as a string
BaseForm — display a number in base b
NumberForm ▪ PaddedForm ▪ DecimalForm ▪ PercentForm ▪ ...
IntegerName — name of an integer (e.g. "thirty-five")
RomanNumeral ▪ FromRomanNumeral
NumberDecompose — decompose into multiples of units (e.g. currency denominations)
NumberCompose — reconstruct a number from its decomposition
MixedRadix — represent mixed radix in all operations (e.g. hours, minutes, seconds)
Bitwise Operations »
BitAnd ▪ BitOr ▪ BitXor ▪ BitNot ▪ BitShiftLeft ▪ BitSet ▪ ...