StieltjesGamma
gives the Stieltjes constant .
StieltjesGamma[n,a]
gives the generalized Stieltjes constant .
Details

- Mathematical function, suitable for both symbolic and numerical manipulation.
is the coefficient of
in the Laurent expansion of
about the point
.
- The
are generalizations of Euler's constant;
.
is the coefficient of
in the Laurent expansion of
about the point
.
- For certain special arguments, StieltjesGamma automatically evaluates to exact values.
- StieltjesGamma can be evaluated to arbitrary numerical precision.
- StieltjesGamma automatically threads over lists.
- StieltjesGamma can be used with Interval and CenteredInterval objects. »
Examples
open allclose allBasic Examples (3)
Scope (5)
TraditionalForm formatting:
Evaluate for complex second argument:
The precision of the output tracks the precision of the input:
StieltjesGamma threads element-wise over lists:
StieltjesGamma can be used with Interval and CenteredInterval objects:
Applications (3)
Expansion of the Riemann zeta function:
Expansion of the Hurwitz zeta function:
Test Li’s criterion for the Riemann hypothesis:
All values should be positive:
Express integrals in terms of StieltjesGamma:
Properties & Relations (2)
Possible Issues (4)
Substitution of derivatives of Zeta at yields indeterminate values:


Use Limit to obtain the expansion coefficient:
The argument of StieltjesGamma must be an exact non-negative integer:

Use N to obtain a numerical approximation:
Alternatively, use two-argument form:
StieltjesGamma does not allow numericalization of its index:
It is currently not known if Stieltjes constants are algebraic numbers:
Text
Wolfram Research (1996), StieltjesGamma, Wolfram Language function, https://reference.wolfram.com/language/ref/StieltjesGamma.html (updated 2022).
CMS
Wolfram Language. 1996. "StieltjesGamma." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2022. https://reference.wolfram.com/language/ref/StieltjesGamma.html.
APA
Wolfram Language. (1996). StieltjesGamma. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/StieltjesGamma.html