TransferFunctionZeros
✖
TransferFunctionZeros
Examples
open allclose allBasic Examples (3)Summary of the most common use cases
Compute the zeros for a SISO system:

https://wolfram.com/xid/0tp87ouzgrb3tg-dorm94


https://wolfram.com/xid/0tp87ouzgrb3tg-tmalf


https://wolfram.com/xid/0tp87ouzgrb3tg-cyv8zw

Time-delay systems may have infinite poles:

https://wolfram.com/xid/0tp87ouzgrb3tg-eifj2

Get only the values within a square about the origin:

https://wolfram.com/xid/0tp87ouzgrb3tg-hizvca

Scope (5)Survey of the scope of standard use cases

https://wolfram.com/xid/0tp87ouzgrb3tg-k2hwat


https://wolfram.com/xid/0tp87ouzgrb3tg-hzohru

Compute the zeros of a inverted pendulum model:

https://wolfram.com/xid/0tp87ouzgrb3tg-lvu60

The zeros of a system with parallel subsystems:

https://wolfram.com/xid/0tp87ouzgrb3tg-th4brd

https://wolfram.com/xid/0tp87ouzgrb3tg-wz0p7h

https://wolfram.com/xid/0tp87ouzgrb3tg-nc3d39

They are different from the zeros of the individual subsystems:

https://wolfram.com/xid/0tp87ouzgrb3tg-mjzpdj

The zeros of a time-delay system in a square around the origin:

https://wolfram.com/xid/0tp87ouzgrb3tg-cq4f78

The zeros trace out paths on the complex plane:

https://wolfram.com/xid/0tp87ouzgrb3tg-oz163i

Applications (3)Sample problems that can be solved with this function
Compute the zeros of a PID controller:

https://wolfram.com/xid/0tp87ouzgrb3tg-lf12mz

A function to create pole-zero plots:

https://wolfram.com/xid/0tp87ouzgrb3tg-0naf0p

https://wolfram.com/xid/0tp87ouzgrb3tg-gzw7gm

https://wolfram.com/xid/0tp87ouzgrb3tg-f48z4b

Find the zeros of the time-delay system near the origin:

https://wolfram.com/xid/0tp87ouzgrb3tg-clrux

Create a delay-free approximation using the poles:

https://wolfram.com/xid/0tp87ouzgrb3tg-dysl9j

Compare step responses of the time-delay system and the delay-free approximation:

https://wolfram.com/xid/0tp87ouzgrb3tg-frypo0

Properties & Relations (3)Properties of the function, and connections to other functions
For SISO systems, the zeros block the transmission of specific input signals:

https://wolfram.com/xid/0tp87ouzgrb3tg-zp4vkc

The steady-state response of the system to Sin[0.5 t] is zero:

https://wolfram.com/xid/0tp87ouzgrb3tg-gpknt7

The response to Sin[5 t] does not go to zero:

https://wolfram.com/xid/0tp87ouzgrb3tg-hhnxdu

A damped second-order system with a minimum-phase zero:

https://wolfram.com/xid/0tp87ouzgrb3tg-ljdiz5

The rise time decreases and the overshoot increases as the zero moves away from the poles:

https://wolfram.com/xid/0tp87ouzgrb3tg-7djfju

The response of a system with nonminimum-phase zeros starts out in the reverse direction:

https://wolfram.com/xid/0tp87ouzgrb3tg-dh7i5f

A discrete-time, nonminimum-phase system:

https://wolfram.com/xid/0tp87ouzgrb3tg-dgy9s3

Possible Issues (1)Common pitfalls and unexpected behavior
TransferFunctionZeros may not find solutions for time-delay systems:

https://wolfram.com/xid/0tp87ouzgrb3tg-j2cyjh



https://wolfram.com/xid/0tp87ouzgrb3tg-dbjb1b


https://wolfram.com/xid/0tp87ouzgrb3tg-izqvx

Wolfram Research (2010), TransferFunctionZeros, Wolfram Language function, https://reference.wolfram.com/language/ref/TransferFunctionZeros.html (updated 2012).
Text
Wolfram Research (2010), TransferFunctionZeros, Wolfram Language function, https://reference.wolfram.com/language/ref/TransferFunctionZeros.html (updated 2012).
Wolfram Research (2010), TransferFunctionZeros, Wolfram Language function, https://reference.wolfram.com/language/ref/TransferFunctionZeros.html (updated 2012).
CMS
Wolfram Language. 2010. "TransferFunctionZeros." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2012. https://reference.wolfram.com/language/ref/TransferFunctionZeros.html.
Wolfram Language. 2010. "TransferFunctionZeros." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2012. https://reference.wolfram.com/language/ref/TransferFunctionZeros.html.
APA
Wolfram Language. (2010). TransferFunctionZeros. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/TransferFunctionZeros.html
Wolfram Language. (2010). TransferFunctionZeros. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/TransferFunctionZeros.html
BibTeX
@misc{reference.wolfram_2025_transferfunctionzeros, author="Wolfram Research", title="{TransferFunctionZeros}", year="2012", howpublished="\url{https://reference.wolfram.com/language/ref/TransferFunctionZeros.html}", note=[Accessed: 20-May-2025
]}
BibLaTeX
@online{reference.wolfram_2025_transferfunctionzeros, organization={Wolfram Research}, title={TransferFunctionZeros}, year={2012}, url={https://reference.wolfram.com/language/ref/TransferFunctionZeros.html}, note=[Accessed: 20-May-2025
]}