WaveletScale

WaveletScale

is an option for ContinuousWaveletTransform and related constructs used to specify the smallest resolvable scale.

Details

  • WaveletScale represents the smallest resolvable scale in a ContinuousWaveletTransform.
  • The continuous wavelet transform of a uniformly sampled sequence is given by w(u,s)=1/(sqrt(s))sum_(k=1)^nx_k TemplateBox[{psi}, Conjugate]((Delta (k-u))/s).
  • The scaling parameter is given by equal-tempered scale where is the octave number, the voice number, and the smallest wavelet scale.
  • The default value for WaveletScale is Automatic. The value of can be any number greater than 0.

Examples

open allclose all

Basic Examples  (1)

WaveletScale indicates the smallest resolvable scale used for the transform:

The scales used are given as with wavelet scale, octave, and voice:

Properties & Relations  (1)

Automatic value of WaveletScale is computed as the inverse of Fourier wavelet length of the wavelet:

MorletWavelet[]:

GaborWavelet[w]:

DGaussianWavelet[n]:

MexicanHatWavelet[σ]:

PaulWavelet[n]:

Wolfram Research (2010), WaveletScale, Wolfram Language function, https://reference.wolfram.com/language/ref/WaveletScale.html.

Text

Wolfram Research (2010), WaveletScale, Wolfram Language function, https://reference.wolfram.com/language/ref/WaveletScale.html.

CMS

Wolfram Language. 2010. "WaveletScale." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/WaveletScale.html.

APA

Wolfram Language. (2010). WaveletScale. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/WaveletScale.html

BibTeX

@misc{reference.wolfram_2024_waveletscale, author="Wolfram Research", title="{WaveletScale}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/WaveletScale.html}", note=[Accessed: 04-November-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_waveletscale, organization={Wolfram Research}, title={WaveletScale}, year={2010}, url={https://reference.wolfram.com/language/ref/WaveletScale.html}, note=[Accessed: 04-November-2024 ]}