WeierstrassEta1
WeierstrassEta1[{g2,g3}]
gives the value η1 of the Weierstrass zeta function ζ at the half-period .
Details
- Mathematical function, suitable for both symbolic and numerical manipulation.
- WeierstrassEta1 can be evaluated to arbitrary numerical precision.
Examples
open allclose allBasic Examples (3)
Represent the value of WeierstrassZeta at the half-period ω1:
Scope (8)
Evaluate for complex arguments:
Evaluate to arbitrary numerical precision:
The precision of the output tracks the precision of the input:
Evaluate symbolically for the equianharmonic case:
Evaluate symbolically for the lemniscatic case:
WeierstrassEta1 has both singularities and discontinuities:
WeierstrassEta1 is neither non-negative nor non-positive:
WeierstrassEta1 is neither convex nor concave:
TraditionalForm formatting:
Properties & Relations (2)
WeierstrassZeta is quasi‐periodic on the lattice of periods of WeierstrassP:
The values of WeierstrassZeta at the half-periods are not linearly independent:
Text
Wolfram Research (2017), WeierstrassEta1, Wolfram Language function, https://reference.wolfram.com/language/ref/WeierstrassEta1.html.
CMS
Wolfram Language. 2017. "WeierstrassEta1." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/WeierstrassEta1.html.
APA
Wolfram Language. (2017). WeierstrassEta1. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/WeierstrassEta1.html