WOLFRAM

WeierstrassEta3[{g2,g3}]

gives the value η3 of the Weierstrass zeta function ζ at the half-period TemplateBox[{{g, _, 2}, {g, _, 3}}, WeierstrassHalfPeriodW3].

Details

  • Mathematical function, suitable for both symbolic and numerical manipulation.
  • WeierstrassEta3 can be evaluated to arbitrary numerical precision.

Examples

open allclose all

Basic Examples  (3)Summary of the most common use cases

Represent the value of WeierstrassZeta at the half-period ω3:

Out[1]=1

Evaluate numerically:

Out[1]=1

Plot the real and imaginary parts of η3:

Out[1]=1

Scope  (8)Survey of the scope of standard use cases

Evaluate for complex arguments:

Out[1]=1

Evaluate to arbitrary numerical precision:

Out[1]=1

The precision of the output tracks the precision of the input:

Out[1]=1
Out[2]=2

Evaluate symbolically for the equianharmonic case:

Out[1]=1

Evaluate symbolically for the lemniscatic case:

Out[2]=2

WeierstrassEta3 has both singularities and discontinuities:

Out[1]=1
Out[2]=2

WeierstrassEta3 is neither non-negative nor non-positive:

Out[1]=1

It is inherently complex:

Out[2]=2

WeierstrassEta3 is neither convex nor concave:

Out[1]=1

TraditionalForm formatting:

Properties & Relations  (2)Properties of the function, and connections to other functions

WeierstrassZeta is quasiperiodic on the lattice of periods of WeierstrassP:

Out[1]=1
Out[2]=2
Out[3]=3

The values of WeierstrassZeta at the half-periods are not linearly independent:

Out[1]=1

This identity holds for all arguments:

Wolfram Research (2017), WeierstrassEta3, Wolfram Language function, https://reference.wolfram.com/language/ref/WeierstrassEta3.html.
Wolfram Research (2017), WeierstrassEta3, Wolfram Language function, https://reference.wolfram.com/language/ref/WeierstrassEta3.html.

Text

Wolfram Research (2017), WeierstrassEta3, Wolfram Language function, https://reference.wolfram.com/language/ref/WeierstrassEta3.html.

Wolfram Research (2017), WeierstrassEta3, Wolfram Language function, https://reference.wolfram.com/language/ref/WeierstrassEta3.html.

CMS

Wolfram Language. 2017. "WeierstrassEta3." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/WeierstrassEta3.html.

Wolfram Language. 2017. "WeierstrassEta3." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/WeierstrassEta3.html.

APA

Wolfram Language. (2017). WeierstrassEta3. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/WeierstrassEta3.html

Wolfram Language. (2017). WeierstrassEta3. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/WeierstrassEta3.html

BibTeX

@misc{reference.wolfram_2025_weierstrasseta3, author="Wolfram Research", title="{WeierstrassEta3}", year="2017", howpublished="\url{https://reference.wolfram.com/language/ref/WeierstrassEta3.html}", note=[Accessed: 08-June-2025 ]}

@misc{reference.wolfram_2025_weierstrasseta3, author="Wolfram Research", title="{WeierstrassEta3}", year="2017", howpublished="\url{https://reference.wolfram.com/language/ref/WeierstrassEta3.html}", note=[Accessed: 08-June-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_weierstrasseta3, organization={Wolfram Research}, title={WeierstrassEta3}, year={2017}, url={https://reference.wolfram.com/language/ref/WeierstrassEta3.html}, note=[Accessed: 08-June-2025 ]}

@online{reference.wolfram_2025_weierstrasseta3, organization={Wolfram Research}, title={WeierstrassEta3}, year={2017}, url={https://reference.wolfram.com/language/ref/WeierstrassEta3.html}, note=[Accessed: 08-June-2025 ]}