WeierstrassEta3
✖
WeierstrassEta3
gives the value η3 of the Weierstrass zeta function ζ at the half-period .
Details

- Mathematical function, suitable for both symbolic and numerical manipulation.
- WeierstrassEta3 can be evaluated to arbitrary numerical precision.
Examples
open allclose allBasic Examples (3)Summary of the most common use cases
Represent the value of WeierstrassZeta at the half-period ω3:

https://wolfram.com/xid/0btotzhnsfnp-dzadk4


https://wolfram.com/xid/0btotzhnsfnp-dgzfnh

Plot the real and imaginary parts of η3:

https://wolfram.com/xid/0btotzhnsfnp-fcuh4

Scope (8)Survey of the scope of standard use cases
Evaluate for complex arguments:

https://wolfram.com/xid/0btotzhnsfnp-ep8m36

Evaluate to arbitrary numerical precision:

https://wolfram.com/xid/0btotzhnsfnp-edgtwd

The precision of the output tracks the precision of the input:

https://wolfram.com/xid/0btotzhnsfnp-bapeoy


https://wolfram.com/xid/0btotzhnsfnp-czortl

Evaluate symbolically for the equianharmonic case:

https://wolfram.com/xid/0btotzhnsfnp-dmeqrb

Evaluate symbolically for the lemniscatic case:

https://wolfram.com/xid/0btotzhnsfnp-bs95ea

WeierstrassEta3 has both singularities and discontinuities:

https://wolfram.com/xid/0btotzhnsfnp-mdtl3h


https://wolfram.com/xid/0btotzhnsfnp-mn5jws

WeierstrassEta3 is neither non-negative nor non-positive:

https://wolfram.com/xid/0btotzhnsfnp-84dui


https://wolfram.com/xid/0btotzhnsfnp-t326s

WeierstrassEta3 is neither convex nor concave:

https://wolfram.com/xid/0btotzhnsfnp-8kku21

TraditionalForm formatting:

https://wolfram.com/xid/0btotzhnsfnp-bnbf44

Properties & Relations (2)Properties of the function, and connections to other functions
WeierstrassZeta is quasiperiodic on the lattice of periods of WeierstrassP:

https://wolfram.com/xid/0btotzhnsfnp-xeg4u


https://wolfram.com/xid/0btotzhnsfnp-f62sqy


https://wolfram.com/xid/0btotzhnsfnp-bp047i

The values of WeierstrassZeta at the half-periods are not linearly independent:

https://wolfram.com/xid/0btotzhnsfnp-bwnl1o

This identity holds for all arguments:

https://wolfram.com/xid/0btotzhnsfnp-b0y60x

Wolfram Research (2017), WeierstrassEta3, Wolfram Language function, https://reference.wolfram.com/language/ref/WeierstrassEta3.html.
Text
Wolfram Research (2017), WeierstrassEta3, Wolfram Language function, https://reference.wolfram.com/language/ref/WeierstrassEta3.html.
Wolfram Research (2017), WeierstrassEta3, Wolfram Language function, https://reference.wolfram.com/language/ref/WeierstrassEta3.html.
CMS
Wolfram Language. 2017. "WeierstrassEta3." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/WeierstrassEta3.html.
Wolfram Language. 2017. "WeierstrassEta3." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/WeierstrassEta3.html.
APA
Wolfram Language. (2017). WeierstrassEta3. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/WeierstrassEta3.html
Wolfram Language. (2017). WeierstrassEta3. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/WeierstrassEta3.html
BibTeX
@misc{reference.wolfram_2025_weierstrasseta3, author="Wolfram Research", title="{WeierstrassEta3}", year="2017", howpublished="\url{https://reference.wolfram.com/language/ref/WeierstrassEta3.html}", note=[Accessed: 08-June-2025
]}
BibLaTeX
@online{reference.wolfram_2025_weierstrasseta3, organization={Wolfram Research}, title={WeierstrassEta3}, year={2017}, url={https://reference.wolfram.com/language/ref/WeierstrassEta3.html}, note=[Accessed: 08-June-2025
]}