WeierstrassInvariants[{ω1,ω3}]
gives the invariants {g2,g3} for Weierstrass elliptic functions corresponding to the half‐periods {ω1,ω3}.


WeierstrassInvariants
WeierstrassInvariants[{ω1,ω3}]
gives the invariants {g2,g3} for Weierstrass elliptic functions corresponding to the half‐periods {ω1,ω3}.
Details

- Mathematical function, suitable for both symbolic and numerical manipulation.
- WeierstrassInvariants is the inverse of WeierstrassHalfPeriods.
- For certain special arguments, WeierstrassInvariants automatically evaluates to exact values.
- WeierstrassInvariants can be evaluated to arbitrary numerical precision.
- WeierstrassInvariants can be used with CenteredInterval objects. »
Examples
open all close allBasic Examples (3)
Scope (4)
The precision of the output tracks the precision of the input:
Symbolic evaluation of the equianharmonic case of WeierstrassInvariants:
Symbolic evaluation of the lemniscatic case of WeierstrassInvariants:
WeierstrassInvariants can be used with CenteredInterval objects:
Properties & Relations (2)
Possible Issues (1)
Assignment of invariants corresponding to symbolic or exact half‐periods is impossible as the right‐hand side is not a list:

Use WeierstrassInvariantG2 and WeierstrassInvariantG3 instead:
See Also
WeierstrassP InverseWeierstrassP KleinInvariantJ WeierstrassInvariantG2 WeierstrassInvariantG3 WeierstrassHalfPeriods
Function Repository: EisensteinE
Tech Notes
Related Guides
Related Links
History
Introduced in 1996 (3.0) | Updated in 2023 (13.3)
Text
Wolfram Research (1996), WeierstrassInvariants, Wolfram Language function, https://reference.wolfram.com/language/ref/WeierstrassInvariants.html (updated 2023).
CMS
Wolfram Language. 1996. "WeierstrassInvariants." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2023. https://reference.wolfram.com/language/ref/WeierstrassInvariants.html.
APA
Wolfram Language. (1996). WeierstrassInvariants. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/WeierstrassInvariants.html
BibTeX
@misc{reference.wolfram_2025_weierstrassinvariants, author="Wolfram Research", title="{WeierstrassInvariants}", year="2023", howpublished="\url{https://reference.wolfram.com/language/ref/WeierstrassInvariants.html}", note=[Accessed: 13-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_weierstrassinvariants, organization={Wolfram Research}, title={WeierstrassInvariants}, year={2023}, url={https://reference.wolfram.com/language/ref/WeierstrassInvariants.html}, note=[Accessed: 13-August-2025]}