Isomorphism[g,h]
gives an isomorphism between graphs g and h if one exists.
Isomorphism[g,h,All]
gives all isomorphisms between graphs g and h.
Isomorphism[g]
gives the automorphism group of g.


Isomorphism
Isomorphism[g,h]
gives an isomorphism between graphs g and h if one exists.
Isomorphism[g,h,All]
gives all isomorphisms between graphs g and h.
Isomorphism[g]
gives the automorphism group of g.
Details and Options
- Isomorphism functionality is now available in the built-in Wolfram Language function FindGraphIsomorphism.
- To use Isomorphism, you first need to load the Combinatorica Package using Needs["Combinatorica`"].
- This function takes an option Invariants->{f1,f2,…}, where f1,f2,… are functions that are used to compute vertex invariants. These functions are used in the order in which they are specified.
- The default value of Invariants is {DegreesOf2Neighborhood,NumberOf2Paths,Distances}.
Tech Notes
Related Guides
-
▪
- Combinatorica Package ▪
- Graph Algorithms ▪
- Graphs & Networks ▪
- Graph Visualization ▪
- Computation on Graphs ▪
- Graph Construction & Representation ▪
- Graphs and Matrices ▪
- Graph Properties & Measurements ▪
- Graph Operations and Modifications ▪
- Statistical Analysis ▪
- Social Network Analysis ▪
- Graph Properties ▪
- Mathematical Data Formats ▪
- Discrete Mathematics
Text
Wolfram Research (2012), Isomorphism, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/Isomorphism.html.
CMS
Wolfram Language. 2012. "Isomorphism." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/Isomorphism.html.
APA
Wolfram Language. (2012). Isomorphism. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/Combinatorica/ref/Isomorphism.html
BibTeX
@misc{reference.wolfram_2025_isomorphism, author="Wolfram Research", title="{Isomorphism}", year="2012", howpublished="\url{https://reference.wolfram.com/language/Combinatorica/ref/Isomorphism.html}", note=[Accessed: 13-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_isomorphism, organization={Wolfram Research}, title={Isomorphism}, year={2012}, url={https://reference.wolfram.com/language/Combinatorica/ref/Isomorphism.html}, note=[Accessed: 13-August-2025]}