TetrahedronElement
TetrahedronElement[{{i11,i12,i13,i14},…,{in1,in2,in3,in4}}]
represents n linear tetrahedron elements ek with incidents {ik1,ik2,ik3,ik4}.
TetrahedronElement[{{i11,…,i110},…,{in1,…,in10}}]
represents n quadratic tetrahedron elements ek with incidents {ik1,…,ik10}.
TetrahedronElement[{e1,…,en},{m1,…,mn}]
represents n tetrahedron elements ek and n integer markers mk.
Details and Options
- TetrahedronElement is used to represent tetrahedron mesh elements in ElementMesh.
- TetrahedronElement can be used as an input to ToElementMesh.
- Incidents ik,j are integers that index an array of spatial coordinates. The coordinates referenced by ek={ik1,…} are the nodes of the k
tetrahedron.
- The first four incidents ik1, ik2, ik3, and ik4 are always vertices.
- For quadratic tetrahedron elements, the next six incidents are mid-side nodes of possibly curved edges.
- Linear elements are order 1 elements and quadratic elements are order 2 elements.
- In TetrahedronElement[{e1,…,en}], all elements ek need to be of the same order.
- The tetrahedra in TetrahedronElement[{e1,…,en}] will share common nodes, edges, and faces but cannot intersect with each other, or for second-order tetrahedra, with themselves.
- The nodes for a linear and a quadratic tetrahedra are shown:
- For a TetrahedronElement, the face incidents opposite a vertex ij must be counterclockwise. An element {i1,i2,i3,i4} has the face incidents {i4,i3,i2}, {i4,i1,i3}, {i4,i2,i1}, and {i1,i2,i3} for the four faces.
- The tetrahedron element is known in the finite element method as a Serendipity element.

Examples
open allclose allBasic Examples (1)Summary of the most common use cases
Generalizations & Extensions (4)Generalized and extended use cases
The base coordinates of the linear element:

https://wolfram.com/xid/0eg8uvsh6he8azj042i2piux1fjc5ea-bdlhqr

The base incidents of the linear element:

https://wolfram.com/xid/0eg8uvsh6he8azj042i2piux1fjc5ea-e986sw

A mesh with a linear unit element:

https://wolfram.com/xid/0eg8uvsh6he8azj042i2piux1fjc5ea-yi7d7y

Visualization of the linear unit element:

https://wolfram.com/xid/0eg8uvsh6he8azj042i2piux1fjc5ea-gr7kca

The base coordinates of the quadratic element:

https://wolfram.com/xid/0eg8uvsh6he8azj042i2piux1fjc5ea-xkd20r

The base incidents of the quadratic element:

https://wolfram.com/xid/0eg8uvsh6he8azj042i2piux1fjc5ea-4b03mm


https://wolfram.com/xid/0eg8uvsh6he8azj042i2piux1fjc5ea-12438n


https://wolfram.com/xid/0eg8uvsh6he8azj042i2piux1fjc5ea-79tbf8

The base face incidents of the linear element:

https://wolfram.com/xid/0eg8uvsh6he8azj042i2piux1fjc5ea-gf6ti

The base face incidents of the quadratic element:

https://wolfram.com/xid/0eg8uvsh6he8azj042i2piux1fjc5ea-j7cpks

Applications (1)Sample problems that can be solved with this function
A set of linear tetrahedron elements mesh with markers:

https://wolfram.com/xid/0eg8uvsh6he8azj042i2piux1fjc5ea-y7m4zj
Visualizing the index of the coordinates at their respective positions:

https://wolfram.com/xid/0eg8uvsh6he8azj042i2piux1fjc5ea-vf52b6


https://wolfram.com/xid/0eg8uvsh6he8azj042i2piux1fjc5ea-5ksxcf

Visualize the mesh with the elements' markers:

https://wolfram.com/xid/0eg8uvsh6he8azj042i2piux1fjc5ea-fr0s8d

Possible Issues (6)Common pitfalls and unexpected behavior
The incidents must be of the appropriate length:

https://wolfram.com/xid/0eg8uvsh6he8azj042i2piux1fjc5ea-lvcvm4


The incident order cannot be mixed:

https://wolfram.com/xid/0eg8uvsh6he8azj042i2piux1fjc5ea-29oxt4


The incidents must be lists of integers:

https://wolfram.com/xid/0eg8uvsh6he8azj042i2piux1fjc5ea-cm1i73


The number of markers must match the number of incidents:

https://wolfram.com/xid/0eg8uvsh6he8azj042i2piux1fjc5ea-3ab5ie


Markers must be a vector of integers:

https://wolfram.com/xid/0eg8uvsh6he8azj042i2piux1fjc5ea-neqwpm


When possible, noninteger markers will be converted to integers:

https://wolfram.com/xid/0eg8uvsh6he8azj042i2piux1fjc5ea-yp4gm6

Wolfram Research (2014), TetrahedronElement, Wolfram Language function, https://reference.wolfram.com/language/FEMDocumentation/ref/TetrahedronElement.html.
Text
Wolfram Research (2014), TetrahedronElement, Wolfram Language function, https://reference.wolfram.com/language/FEMDocumentation/ref/TetrahedronElement.html.
Wolfram Research (2014), TetrahedronElement, Wolfram Language function, https://reference.wolfram.com/language/FEMDocumentation/ref/TetrahedronElement.html.
CMS
Wolfram Language. 2014. "TetrahedronElement." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/FEMDocumentation/ref/TetrahedronElement.html.
Wolfram Language. 2014. "TetrahedronElement." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/FEMDocumentation/ref/TetrahedronElement.html.
APA
Wolfram Language. (2014). TetrahedronElement. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/FEMDocumentation/ref/TetrahedronElement.html
Wolfram Language. (2014). TetrahedronElement. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/FEMDocumentation/ref/TetrahedronElement.html
BibTeX
@misc{reference.wolfram_2025_tetrahedronelement, author="Wolfram Research", title="{TetrahedronElement}", year="2014", howpublished="\url{https://reference.wolfram.com/language/FEMDocumentation/ref/TetrahedronElement.html}", note=[Accessed: 24-May-2025
]}
BibLaTeX
@online{reference.wolfram_2025_tetrahedronelement, organization={Wolfram Research}, title={TetrahedronElement}, year={2014}, url={https://reference.wolfram.com/language/FEMDocumentation/ref/TetrahedronElement.html}, note=[Accessed: 24-May-2025
]}