GraphUtilities`
GraphUtilities`
LinkRankMatrix
As of Version 10, all the functionality of the GraphUtilities package is built into the Wolfram System. »
LinkRankMatrix[g]
returns the link rank of the graph g, in the form of a sparse matrix. The link rank of an edge u->v is defined as the PageRanks of u, divided by the out-degree of u.
更多信息和选项
- LinkRankMatrix functionality is now available in the built-in Wolfram Language function LinkRankCentrality.
- To use LinkRankMatrix, you first need to load the Graph Utilities Package using Needs["GraphUtilities`"].
- The following options can be given:
-
Tolerance Automatic tolerance used for convergence check TeleportProbability 0.15 probability of visiting random nodes RemoveSinks True whether to remove sinks by linking them with every node - The link rank of a link from vertex i to vertex j is defined as page rank of i, as given by PageRanks[g], divided by the out-degree of i.
- The link rank reflects the probability that a random surfer follows that link.
- LinkRankMatrix has the same options as PageRanks.
范例
打开所有单元关闭所有单元基本范例 (2)
This shows a small network of web pages:
This calculates the link ranks:
LinkRankMatrix has been superseded by LinkRankCentrality:
Wolfram Research (2007),LinkRankMatrix,Wolfram 语言函数,https://reference.wolfram.com/language/GraphUtilities/ref/LinkRankMatrix.html.
文本
Wolfram Research (2007),LinkRankMatrix,Wolfram 语言函数,https://reference.wolfram.com/language/GraphUtilities/ref/LinkRankMatrix.html.
CMS
Wolfram 语言. 2007. "LinkRankMatrix." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/GraphUtilities/ref/LinkRankMatrix.html.
APA
Wolfram 语言. (2007). LinkRankMatrix. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/GraphUtilities/ref/LinkRankMatrix.html 年