LinkRankCentrality
✖
LinkRankCentrality
gives the link-rank centralities, using weight α and initial vertex page-rank centralities β.
Details and Options

- Link-rank centralities represent the likelihood that a person randomly follows a particular link on the web graph.
- Link rank is a way of measuring the importance of links between vertices.
- The link-rank centrality of an edge is the page-rank centrality of its source vertex, divided by its out-degree.
- If β is a scalar, it is taken to mean {β,β,…}.
- LinkRankCentrality[g,α] is equivalent to LinkRankCentrality[g,α,1/VertexCount[g]].
- Link-rank centralities are normalized.
- The option WorkingPrecision->p can be used to control the precision used in internal computations.
- LinkRankCentrality works with undirected graphs, directed graphs, multigraphs, and mixed graphs.
Examples
open allclose allBasic Examples (2)Summary of the most common use cases
Compute link-rank centralities:

https://wolfram.com/xid/0v51t46a4r4ou-dprrh4

https://wolfram.com/xid/0v51t46a4r4ou-3cvhh


https://wolfram.com/xid/0v51t46a4r4ou-g4cic3

https://wolfram.com/xid/0v51t46a4r4ou-dqn9rm

Find the probability that a random surfer follows that link:

https://wolfram.com/xid/0v51t46a4r4ou-hep6lg

https://wolfram.com/xid/0v51t46a4r4ou-jtwb18

Rank web links, with the most visible links first:

https://wolfram.com/xid/0v51t46a4r4ou-bxg7c3

Scope (7)Survey of the scope of standard use cases
LinkRankCentrality works with undirected graphs:

https://wolfram.com/xid/0v51t46a4r4ou-bwkmje


https://wolfram.com/xid/0v51t46a4r4ou-bgzrn4


https://wolfram.com/xid/0v51t46a4r4ou-ikyy8


https://wolfram.com/xid/0v51t46a4r4ou-czvddh

Use rules to specify the graph:

https://wolfram.com/xid/0v51t46a4r4ou-bndh30

Nondefault initial centralities:

https://wolfram.com/xid/0v51t46a4r4ou-coe4mi

LinkRankCentrality works with large graphs:

https://wolfram.com/xid/0v51t46a4r4ou-pq9ae

https://wolfram.com/xid/0v51t46a4r4ou-cevvx1

Options (3)Common values & functionality for each option
WorkingPrecision (3)
By default, LinkRankCentrality finds centralities using machine-precision computations:

https://wolfram.com/xid/0v51t46a4r4ou-bg8b8

Specify a higher working precision:

https://wolfram.com/xid/0v51t46a4r4ou-e6isci

Infinite working precision corresponds to exact computation:

https://wolfram.com/xid/0v51t46a4r4ou-jsrmu

Applications (2)Sample problems that can be solved with this function
Highlight the link-rank centrality for CycleGraph:

https://wolfram.com/xid/0v51t46a4r4ou-blvy5f

https://wolfram.com/xid/0v51t46a4r4ou-baipzx

https://wolfram.com/xid/0v51t46a4r4ou-g2btke

https://wolfram.com/xid/0v51t46a4r4ou-h351s2


https://wolfram.com/xid/0v51t46a4r4ou-jbz7i6

https://wolfram.com/xid/0v51t46a4r4ou-brg6kn

https://wolfram.com/xid/0v51t46a4r4ou-hyiutu


https://wolfram.com/xid/0v51t46a4r4ou-gca8u7

https://wolfram.com/xid/0v51t46a4r4ou-gcylrp

https://wolfram.com/xid/0v51t46a4r4ou-bp9wqg


https://wolfram.com/xid/0v51t46a4r4ou-6ri66

https://wolfram.com/xid/0v51t46a4r4ou-fh33ql

https://wolfram.com/xid/0v51t46a4r4ou-iop80

Rank website links based on the likelihood that a random surfer follows that link:

https://wolfram.com/xid/0v51t46a4r4ou-etjd7f

https://wolfram.com/xid/0v51t46a4r4ou-fa6bgl

Properties & Relations (2)Properties of the function, and connections to other functions
LinkRankCentrality can be found using PageRankCentrality:

https://wolfram.com/xid/0v51t46a4r4ou-fuqhxf


https://wolfram.com/xid/0v51t46a4r4ou-hfzr3e


https://wolfram.com/xid/0v51t46a4r4ou-eo966g

Use EdgeIndex to obtain the centrality of a specific vertex:

https://wolfram.com/xid/0v51t46a4r4ou-szwpd

https://wolfram.com/xid/0v51t46a4r4ou-bbshqt

Wolfram Research (2014), LinkRankCentrality, Wolfram Language function, https://reference.wolfram.com/language/ref/LinkRankCentrality.html (updated 2015).
Text
Wolfram Research (2014), LinkRankCentrality, Wolfram Language function, https://reference.wolfram.com/language/ref/LinkRankCentrality.html (updated 2015).
Wolfram Research (2014), LinkRankCentrality, Wolfram Language function, https://reference.wolfram.com/language/ref/LinkRankCentrality.html (updated 2015).
CMS
Wolfram Language. 2014. "LinkRankCentrality." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2015. https://reference.wolfram.com/language/ref/LinkRankCentrality.html.
Wolfram Language. 2014. "LinkRankCentrality." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2015. https://reference.wolfram.com/language/ref/LinkRankCentrality.html.
APA
Wolfram Language. (2014). LinkRankCentrality. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/LinkRankCentrality.html
Wolfram Language. (2014). LinkRankCentrality. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/LinkRankCentrality.html
BibTeX
@misc{reference.wolfram_2025_linkrankcentrality, author="Wolfram Research", title="{LinkRankCentrality}", year="2015", howpublished="\url{https://reference.wolfram.com/language/ref/LinkRankCentrality.html}", note=[Accessed: 11-May-2025
]}
BibLaTeX
@online{reference.wolfram_2025_linkrankcentrality, organization={Wolfram Research}, title={LinkRankCentrality}, year={2015}, url={https://reference.wolfram.com/language/ref/LinkRankCentrality.html}, note=[Accessed: 11-May-2025
]}