GraphUtilities`
GraphUtilities`
LinkRanks
As of Version 10, all the functionality of the GraphUtilities package is built into the Wolfram System. »
LinkRanks[g]
gives the link ranks of the directed graph g as a rule list.
Details and Options
- LinkRanks functionality is now available in the built-in Wolfram Language function LinkRankCentrality.
- To use LinkRanks, you first need to load the Graph Utilities Package using Needs["GraphUtilities`"].
- The following options can be given:
-
Tolerance Automatic tolerance used for convergence check TeleportProbability 0.15 probability of visiting random nodes RemoveSinks True whether to remove sinks by linking them with every node - The link rank of a link from vertex i to vertex j is defined as page rank of i, as given by PageRanks[g], divided by the out-degree of i.
- The link rank reflects the probability that a random surfer follows that link.
- LinkRanks has the same options as PageRanks.
Examples
Basic Examples (2)Summary of the most common use cases
In[1]:=1

✖
https://wolfram.com/xid/0wbwdnkb9g-cfx6cl
This defines a small directed graph:
In[2]:=2

✖
https://wolfram.com/xid/0wbwdnkb9g-1d3kao
This calculates the link ranks:
In[3]:=3

✖
https://wolfram.com/xid/0wbwdnkb9g-pkhc0i
Out[3]=3

LinkRanks has been superseded by LinkRankCentrality:
In[1]:=1

✖
https://wolfram.com/xid/0wbwdnkb9g-hi209b
In[2]:=2

✖
https://wolfram.com/xid/0wbwdnkb9g-dlnrwm
Out[2]=2

In[3]:=3

✖
https://wolfram.com/xid/0wbwdnkb9g-fbil3c
Out[3]=3

Wolfram Research (2007), LinkRanks, Wolfram Language function, https://reference.wolfram.com/language/GraphUtilities/ref/LinkRanks.html.
✖
Wolfram Research (2007), LinkRanks, Wolfram Language function, https://reference.wolfram.com/language/GraphUtilities/ref/LinkRanks.html.
Text
Wolfram Research (2007), LinkRanks, Wolfram Language function, https://reference.wolfram.com/language/GraphUtilities/ref/LinkRanks.html.
✖
Wolfram Research (2007), LinkRanks, Wolfram Language function, https://reference.wolfram.com/language/GraphUtilities/ref/LinkRanks.html.
CMS
Wolfram Language. 2007. "LinkRanks." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/GraphUtilities/ref/LinkRanks.html.
✖
Wolfram Language. 2007. "LinkRanks." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/GraphUtilities/ref/LinkRanks.html.
APA
Wolfram Language. (2007). LinkRanks. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/GraphUtilities/ref/LinkRanks.html
✖
Wolfram Language. (2007). LinkRanks. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/GraphUtilities/ref/LinkRanks.html
BibTeX
✖
@misc{reference.wolfram_2025_linkranks, author="Wolfram Research", title="{LinkRanks}", year="2007", howpublished="\url{https://reference.wolfram.com/language/GraphUtilities/ref/LinkRanks.html}", note=[Accessed: 08-July-2025
]}
BibLaTeX
✖
@online{reference.wolfram_2025_linkranks, organization={Wolfram Research}, title={LinkRanks}, year={2007}, url={https://reference.wolfram.com/language/GraphUtilities/ref/LinkRanks.html}, note=[Accessed: 08-July-2025
]}