IntegerLength
✖
IntegerLength
Details

- Integer mathematical function, suitable for both symbolic and numerical manipulation.
- IntegerLength[n,b] is effectively an efficient version of Floor[Log[b,n]]+1.
- IntegerLength ignores the sign of n.
- IntegerLength automatically threads over lists.
Examples
open allclose allBasic Examples (4)Summary of the most common use cases
Find the number of decimal digits in 123456789:
In[1]:=1

✖
https://wolfram.com/xid/0i1n559cq-fsb47o
Out[1]=1

The number of binary digits in :
In[1]:=1

✖
https://wolfram.com/xid/0i1n559cq-b6qmx
Out[1]=1

In[1]:=1

✖
https://wolfram.com/xid/0i1n559cq-bfc28o
Out[1]=1

In[2]:=2

✖
https://wolfram.com/xid/0i1n559cq-lro70
Out[2]=2

The IntegerLength for different bases:
In[1]:=1

✖
https://wolfram.com/xid/0i1n559cq-cdij7
Out[1]=1

Wolfram Research (2007), IntegerLength, Wolfram Language function, https://reference.wolfram.com/language/ref/IntegerLength.html.
✖
Wolfram Research (2007), IntegerLength, Wolfram Language function, https://reference.wolfram.com/language/ref/IntegerLength.html.
Text
Wolfram Research (2007), IntegerLength, Wolfram Language function, https://reference.wolfram.com/language/ref/IntegerLength.html.
✖
Wolfram Research (2007), IntegerLength, Wolfram Language function, https://reference.wolfram.com/language/ref/IntegerLength.html.
CMS
Wolfram Language. 2007. "IntegerLength." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/IntegerLength.html.
✖
Wolfram Language. 2007. "IntegerLength." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/IntegerLength.html.
APA
Wolfram Language. (2007). IntegerLength. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/IntegerLength.html
✖
Wolfram Language. (2007). IntegerLength. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/IntegerLength.html
BibTeX
✖
@misc{reference.wolfram_2025_integerlength, author="Wolfram Research", title="{IntegerLength}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/IntegerLength.html}", note=[Accessed: 29-March-2025
]}
BibLaTeX
✖
@online{reference.wolfram_2025_integerlength, organization={Wolfram Research}, title={IntegerLength}, year={2007}, url={https://reference.wolfram.com/language/ref/IntegerLength.html}, note=[Accessed: 29-March-2025
]}