# IntegerExponent

IntegerExponent[n,b]

gives the highest power of b that divides n.

# Details

• Integer mathematical function, suitable for both symbolic and numerical manipulation.
• is equivalent to IntegerExponent[n,10].
• IntegerExponent[n,b] gives the number of trailing zeros in the digits of n in base b.
• IntegerExponent automatically threads over lists.

# Examples

open allclose all

## Basic Examples(3)

The number of trailing zeros:

The highest power of 2:

Plot it:

## Applications(2)

Number of trailing zeros in factorials:

Powers of 2 in successive integers:

## Properties & Relations(1)

Find the highest power of 2 that appears in the factors of a number:

## Neat Examples(1)

A "formula" for DigitCount:

Wolfram Research (1999), IntegerExponent, Wolfram Language function, https://reference.wolfram.com/language/ref/IntegerExponent.html.

#### Text

Wolfram Research (1999), IntegerExponent, Wolfram Language function, https://reference.wolfram.com/language/ref/IntegerExponent.html.

#### CMS

Wolfram Language. 1999. "IntegerExponent." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/IntegerExponent.html.

#### APA

Wolfram Language. (1999). IntegerExponent. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/IntegerExponent.html

#### BibTeX

@misc{reference.wolfram_2024_integerexponent, author="Wolfram Research", title="{IntegerExponent}", year="1999", howpublished="\url{https://reference.wolfram.com/language/ref/IntegerExponent.html}", note=[Accessed: 30-May-2024 ]}

#### BibLaTeX

@online{reference.wolfram_2024_integerexponent, organization={Wolfram Research}, title={IntegerExponent}, year={1999}, url={https://reference.wolfram.com/language/ref/IntegerExponent.html}, note=[Accessed: 30-May-2024 ]}