AngerJ

AngerJ[ν,z]

gives the Anger function TemplateBox[{nu, z}, AngerJ2].

AngerJ[ν,μ,z]

gives the associated Anger function TemplateBox[{nu, mu, z}, AngerJ].

Details

  • Mathematical function, suitable for both symbolic and numerical manipulation.
  • TemplateBox[{nu, z}, AngerJ2] satisfies the differential equation .
  • TemplateBox[{nu, z}, AngerJ2] is defined by TemplateBox[{nu, z}, AngerJ2]=1/piint_0^picos(theta nu-z sin(theta))dtheta.
  • AngerJ[ν,z] is an entire function of z with no branch cut discontinuities.
  • TemplateBox[{nu, mu, z}, AngerJ] is defined by TemplateBox[{nu, mu, z}, AngerJ]=1/piint_0^pi(2sin(theta))^mucos(theta nu-z sin(theta))dtheta.
  • For certain special arguments, AngerJ automatically evaluates to exact values.
  • AngerJ can be evaluated to arbitrary numerical precision.
  • AngerJ automatically threads over lists.
  • AngerJ can be used with Interval and CenteredInterval objects. »

Examples

open allclose all

Basic Examples  (4)

Evaluate numerically:

Plot TemplateBox[{{1, /, 2}, x}, AngerJ2] over a subset of the reals:

Plot over a subset of the complexes:

Series expansion at the origin:

Scope  (39)

Numerical Evaluation  (6)

Evaluate numerically:

Evaluate to high precision:

The precision of the output tracks the precision of the input:

Complex number inputs:

Evaluate efficiently at high precision:

Compute worst-case guaranteed intervals using Interval and CenteredInterval objects:

Or compute average-case statistical intervals using Around:

Compute the elementwise values of an array:

Or compute the matrix AngerJ function using MatrixFunction:

Specific Values  (7)

Limiting value at infinity:

Values at zero:

AngerJ for symbolic ν and x:

Find the first positive maximum of AngerJ:

AngerJ simplifies to BesselJ for integer orders:

Simple exact values are generated automatically:

Evaluate AngerJ for half-integer orders:

Visualization  (3)

Plot the AngerJ function for integer () and half-integer () orders:

Plot the real part of TemplateBox[{0, z}, AngerJ2]:

Plot the imaginary part of TemplateBox[{0, z}, AngerJ2]:

Plot the real part of TemplateBox[{{-, {1, /, 4}}, z}, AngerJ2]:

Plot the imaginary part of TemplateBox[{{-, {1, /, 4}}, z}, AngerJ2]:

Function Properties  (15)

Real domain of TemplateBox[{0, x}, AngerJ2]:

Complex domain of TemplateBox[{0, z}, AngerJ2]:

TemplateBox[{{-, {1, /, 2}}, x}, AngerJ2] is defined for all real values:

Complex domain is the whole plane:

Approximate function range of TemplateBox[{0, x}, AngerJ2]:

Approximate function range of TemplateBox[{1, x}, AngerJ2]:

TemplateBox[{0, x}, AngerJ2] is an even function:

TemplateBox[{1, x}, AngerJ2] is an odd function:

Use FullSimplify to simplify Anger functions:

AngerJ threads elementwise over lists:

TemplateBox[{2, x}, AngerJ2] is an analytic function of :

AngerJ is neither non-decreasing nor non-increasing:

TemplateBox[{2, x}, AngerJ2] is not injective:

TemplateBox[{2, x}, AngerJ2] is not surjective:

AngerJ is neither non-negative nor non-positive:

AngerJ does not have either singularity or discontinuity:

AngerJ is neither convex nor concave:

TraditionalForm formatting:

Differentiation and Integration  (5)

First derivatives with respect to z:

Higher derivatives with respect to z:

Plot the higher derivatives with respect to z when ν=1/4:

Formula for the ^(th) derivative with respect to z when ν=3:

Indefinite integral of AngerJ:

More integrals:

Series Expansions  (3)

Find the Taylor expansion using Series:

Plots of the first three approximations around :

General term in the series expansion using SeriesCoefficient:

Taylor expansion at a generic point:

Properties & Relations  (2)

Use FunctionExpand to expand AngerJ into hypergeometric functions:

Relationships between the Anger and Weber functions:

Wolfram Research (2008), AngerJ, Wolfram Language function, https://reference.wolfram.com/language/ref/AngerJ.html.

Text

Wolfram Research (2008), AngerJ, Wolfram Language function, https://reference.wolfram.com/language/ref/AngerJ.html.

CMS

Wolfram Language. 2008. "AngerJ." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/AngerJ.html.

APA

Wolfram Language. (2008). AngerJ. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/AngerJ.html

BibTeX

@misc{reference.wolfram_2024_angerj, author="Wolfram Research", title="{AngerJ}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/AngerJ.html}", note=[Accessed: 21-January-2025 ]}

BibLaTeX

@online{reference.wolfram_2024_angerj, organization={Wolfram Research}, title={AngerJ}, year={2008}, url={https://reference.wolfram.com/language/ref/AngerJ.html}, note=[Accessed: 21-January-2025 ]}