AudioIntervals
✖
AudioIntervals

Details and Options




- AudioIntervals can be used to detect parts of an audio signal that have specific characteristics.
- The criteria crit can either be a string specifying a high-level objective or a pure function using local audio properties.
- High-level string settings for crit can be one of the following:
-
"Audible" audible intervals, RMS amplitude above 0.01 "Inaudible" inaudible intervals, RMS amplitude less than or equal to 0.01 "Loud" louder intervals, data-dependent threshold "Quiet" quieter intervals, data-dependent threshold "VoiceActivity" intervals with detected speech "VoiceInactivity" intervals with no detected speech - The criteria crit can also be a function taking #prop arguments and uses the local property "prop" for each partition selection.
- The following properties can be used for interval selections.
- Basic histogram properties:
-
"MaxAbs" maximum absolute value "Max" maximum value "StandardDeviation" standard deviation of values - Intensity properties:
-
"Power" mean of the squared values "RMSAmplitude" root mean square of the values "Loudness" the loudness using Steven's power law "LoudnessEBU" the loudness according to EBU momentary standard - Time domain properties:
-
"CrestFactor" maximum divided by the root mean square "Entropy" entropy of values "PeakToAveragePowerRatio" maximum power divided by the average power "ZeroCrossingRate" rate of zero crossings "ZeroCrossings" number of zero crossings - Frequency domain properties:
-
"FundamentalFrequency" estimated fundamental frequency "ModifiedKullbackLeibler" modified Kullback–Leibler distance between spectra of consecutive partitions "SpectralCentroid" centroid of the power spectrum "SpectralCrest" maximum divided by the mean of the power spectrum "SpectralFlatness" geometric mean divided by the mean of the power spectrum "SpectralKurtosis" kurtosis of the magnitude spectrum "SpectralRollOff" frequency below which most of the energy is concentrated "SpectralSkewness" skewness of the magnitude spectrum "SpectralSlope" estimated slope of the magnitude spectrum "SpectralSpread" measure of the bandwidth of the power spectrum "SpeechFundamentalFrequency" fundamental frequency optimized for speech signals "VoiceActivity" detected voice activity for speech signals - The minimum duration mindur can be a non-negative real number in seconds, a time quantity, or a samples quantity.
- The following options can be given:
-
Alignment Automatic alignment of the time stamps with partitions FourierParameters {-1,1} Fourier parameters PartitionGranularity Automatic audio partitioning specification - By default, measurements are returned at the center of each partition. Using the Alignment option, measurements can be returned at the beginning (Left) or end (Right) of each partition.
Examples
open allclose allBasic Examples (2)Summary of the most common use cases
Compute silent intervals of audio:

https://wolfram.com/xid/0g7ibczwwec-o0nvmy

Find intervals where the RMS amplitude is less than 0.01:

https://wolfram.com/xid/0g7ibczwwec-86mdcs


https://wolfram.com/xid/0g7ibczwwec-4fnf9m

Find intervals with low RMS amplitudes:

https://wolfram.com/xid/0g7ibczwwec-iivioy


https://wolfram.com/xid/0g7ibczwwec-s8gpmw

Visualize the resulting intervals:

https://wolfram.com/xid/0g7ibczwwec-e3al3r

Scope (4)Survey of the scope of standard use cases
Find quiet intervals using a data-dependent threshold:

https://wolfram.com/xid/0g7ibczwwec-dpa546


https://wolfram.com/xid/0g7ibczwwec-4zf8eo

By default, intervals of any length are returned:

https://wolfram.com/xid/0g7ibczwwec-o1yknv


https://wolfram.com/xid/0g7ibczwwec-xx9la1

Compute the interval durations:

https://wolfram.com/xid/0g7ibczwwec-uil19i

Find only intervals longer than a specified threshold:

https://wolfram.com/xid/0g7ibczwwec-e6e95u

Test multiple properties at once:

https://wolfram.com/xid/0g7ibczwwec-ff3k5r

https://wolfram.com/xid/0g7ibczwwec-pcvbs0

Analyze the audio track of a video:

https://wolfram.com/xid/0g7ibczwwec-l7x9gq

Options (2)Common values & functionality for each option
PartitionGranularity (2)
Specify a partition size of 100 ms:

https://wolfram.com/xid/0g7ibczwwec-qhi76r

https://wolfram.com/xid/0g7ibczwwec-eciks7


https://wolfram.com/xid/0g7ibczwwec-sceiq6


https://wolfram.com/xid/0g7ibczwwec-jagi98

Using different partitioning specifications will give different results:

https://wolfram.com/xid/0g7ibczwwec-d76ocj

https://wolfram.com/xid/0g7ibczwwec-o0szji

A coarse partitioning will result in a faster computation:

https://wolfram.com/xid/0g7ibczwwec-52n0ga

Applications (4)Sample problems that can be solved with this function
Delete silent intervals of audio:

https://wolfram.com/xid/0g7ibczwwec-ra5bvq

Find the intervals where the RMS amplitude is larger than a threshold:

https://wolfram.com/xid/0g7ibczwwec-tk9zti


https://wolfram.com/xid/0g7ibczwwec-3fd4z4


https://wolfram.com/xid/0g7ibczwwec-wtyip9

It is also possible to find silent intervals using a momentary loudness definition from the EBU standard:

https://wolfram.com/xid/0g7ibczwwec-zi7qns


https://wolfram.com/xid/0g7ibczwwec-72t08c


https://wolfram.com/xid/0g7ibczwwec-og7xmf

Use the "VoiceActivity" property to detect voiced intervals in a speech signal:

https://wolfram.com/xid/0g7ibczwwec-jzgu0l


https://wolfram.com/xid/0g7ibczwwec-6lkjwo

Visualize the detected intervals:

https://wolfram.com/xid/0g7ibczwwec-2zv2ea

Combine other properties such as RMS amplitude and spectral flatness to find unvoiced audio segments:

https://wolfram.com/xid/0g7ibczwwec-g2zv91


https://wolfram.com/xid/0g7ibczwwec-buxr0h

Visualize the detected intervals:

https://wolfram.com/xid/0g7ibczwwec-syarl7

Detect unvoiced segments and attenuate them:

https://wolfram.com/xid/0g7ibczwwec-hv6thp

Use the "VoiceActivity" property to detect unvoiced intervals:

https://wolfram.com/xid/0g7ibczwwec-wbbw0g

Visualize the detected intervals:

https://wolfram.com/xid/0g7ibczwwec-jc78yd

Attenuate the detected intervals:

https://wolfram.com/xid/0g7ibczwwec-f0horh

Possible Issues (1)Common pitfalls and unexpected behavior
The criterion function will fail if the return value is not a Boolean:

https://wolfram.com/xid/0g7ibczwwec-g3vopn


Some properties, such as "FundamentalFrequency", can have non-numeric values, so extra care is needed:

https://wolfram.com/xid/0g7ibczwwec-6gkwmc



https://wolfram.com/xid/0g7ibczwwec-7g47m2

Wolfram Research (2016), AudioIntervals, Wolfram Language function, https://reference.wolfram.com/language/ref/AudioIntervals.html (updated 2024).
Text
Wolfram Research (2016), AudioIntervals, Wolfram Language function, https://reference.wolfram.com/language/ref/AudioIntervals.html (updated 2024).
Wolfram Research (2016), AudioIntervals, Wolfram Language function, https://reference.wolfram.com/language/ref/AudioIntervals.html (updated 2024).
CMS
Wolfram Language. 2016. "AudioIntervals." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2024. https://reference.wolfram.com/language/ref/AudioIntervals.html.
Wolfram Language. 2016. "AudioIntervals." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2024. https://reference.wolfram.com/language/ref/AudioIntervals.html.
APA
Wolfram Language. (2016). AudioIntervals. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/AudioIntervals.html
Wolfram Language. (2016). AudioIntervals. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/AudioIntervals.html
BibTeX
@misc{reference.wolfram_2025_audiointervals, author="Wolfram Research", title="{AudioIntervals}", year="2024", howpublished="\url{https://reference.wolfram.com/language/ref/AudioIntervals.html}", note=[Accessed: 26-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_audiointervals, organization={Wolfram Research}, title={AudioIntervals}, year={2024}, url={https://reference.wolfram.com/language/ref/AudioIntervals.html}, note=[Accessed: 26-April-2025
]}