CarlsonRF
✖
CarlsonRF
Details

- Mathematical function, suitable for both symbolic and numerical manipulation.
- For
,
and
,
.
- CarlsonRF[x,y,z] has a branch cut discontinuity for
.
- For certain arguments, CarlsonRF automatically evaluates to exact values.
- CarlsonRF can be evaluated to arbitrary numerical precision.
- CarlsonRF automatically threads over lists.
- CarlsonRF can be used with Interval and CenteredInterval objects. »
Examples
open allclose allBasic Examples (3)Summary of the most common use cases

https://wolfram.com/xid/0bnhv6qov8gai-dpixqm

Plot over a range of arguments:

https://wolfram.com/xid/0bnhv6qov8gai-gi0fk3

CarlsonRF is related to the Legendre elliptic integral of the first kind for
:

https://wolfram.com/xid/0bnhv6qov8gai-nrznwy


https://wolfram.com/xid/0bnhv6qov8gai-vp8qn

Scope (17)Survey of the scope of standard use cases
Numerical Evaluation (6)

https://wolfram.com/xid/0bnhv6qov8gai-ca7jx4


https://wolfram.com/xid/0bnhv6qov8gai-msin0h


https://wolfram.com/xid/0bnhv6qov8gai-c9glx4

Precision of the output tracks the precision of the input:

https://wolfram.com/xid/0bnhv6qov8gai-dryelq


https://wolfram.com/xid/0bnhv6qov8gai-blyyy3

Evaluate for complex arguments:

https://wolfram.com/xid/0bnhv6qov8gai-csaoq3

Evaluate efficiently at high precision:

https://wolfram.com/xid/0bnhv6qov8gai-bnknmr


https://wolfram.com/xid/0bnhv6qov8gai-73gnj

CarlsonRF threads elementwise over lists:

https://wolfram.com/xid/0bnhv6qov8gai-cn7alx

CarlsonRF can be used with Interval and CenteredInterval objects:

https://wolfram.com/xid/0bnhv6qov8gai-dwg06f


https://wolfram.com/xid/0bnhv6qov8gai-hlryvn

Specific Values (4)
Simple exact results are generated automatically:

https://wolfram.com/xid/0bnhv6qov8gai-eftyik


https://wolfram.com/xid/0bnhv6qov8gai-gdebdv

When one argument of CarlsonRF is zero, CarlsonRF reduces to the complete elliptic integral CarlsonRK:

https://wolfram.com/xid/0bnhv6qov8gai-ns44x5

When two of the arguments of CarlsonRF are identical and do not lie on the negative real axis, CarlsonRF reduces to CarlsonRC:

https://wolfram.com/xid/0bnhv6qov8gai-ndydra

When all arguments of CarlsonRF are identical and do not lie on the negative real axis, CarlsonRF reduces to an elementary function:

https://wolfram.com/xid/0bnhv6qov8gai-buy3cp

Differentiation and Integration (2)
Function Representations (1)
Function Identities and Simplifications (4)
An equation relating CarlsonRF, CarlsonRG and CarlsonRD:

https://wolfram.com/xid/0bnhv6qov8gai-ejtp1i

CarlsonRF satisfies the Euler–Poisson partial differential equation:

https://wolfram.com/xid/0bnhv6qov8gai-fpunj

CarlsonRF satisfies Euler's homogeneity relation:

https://wolfram.com/xid/0bnhv6qov8gai-zxe9v

A partial differential equation satisfied by CarlsonRF:

https://wolfram.com/xid/0bnhv6qov8gai-n1rgg3

Applications (3)Sample problems that can be solved with this function
Distance along a meridian of the Earth:

https://wolfram.com/xid/0bnhv6qov8gai-hee91

Compare with the result of GeoDistance:

https://wolfram.com/xid/0bnhv6qov8gai-di7s2e

Expectation value of the reciprocal square root of a quadratic form over a normal distribution:

https://wolfram.com/xid/0bnhv6qov8gai-f0ryoc


https://wolfram.com/xid/0bnhv6qov8gai-fkufen

Compare with the closed-form result in terms of CarlsonRF:

https://wolfram.com/xid/0bnhv6qov8gai-co4nqb

Express EllipticLog in terms of CarlsonRF:

https://wolfram.com/xid/0bnhv6qov8gai-er1fbx

Properties & Relations (1)Properties of the function, and connections to other functions
CarlsonRF is invariant under a permutation of its arguments:

https://wolfram.com/xid/0bnhv6qov8gai-hqjxwc

Wolfram Research (2021), CarlsonRF, Wolfram Language function, https://reference.wolfram.com/language/ref/CarlsonRF.html (updated 2023).
Text
Wolfram Research (2021), CarlsonRF, Wolfram Language function, https://reference.wolfram.com/language/ref/CarlsonRF.html (updated 2023).
Wolfram Research (2021), CarlsonRF, Wolfram Language function, https://reference.wolfram.com/language/ref/CarlsonRF.html (updated 2023).
CMS
Wolfram Language. 2021. "CarlsonRF." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2023. https://reference.wolfram.com/language/ref/CarlsonRF.html.
Wolfram Language. 2021. "CarlsonRF." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2023. https://reference.wolfram.com/language/ref/CarlsonRF.html.
APA
Wolfram Language. (2021). CarlsonRF. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/CarlsonRF.html
Wolfram Language. (2021). CarlsonRF. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/CarlsonRF.html
BibTeX
@misc{reference.wolfram_2025_carlsonrf, author="Wolfram Research", title="{CarlsonRF}", year="2023", howpublished="\url{https://reference.wolfram.com/language/ref/CarlsonRF.html}", note=[Accessed: 26-March-2025
]}
BibLaTeX
@online{reference.wolfram_2025_carlsonrf, organization={Wolfram Research}, title={CarlsonRF}, year={2023}, url={https://reference.wolfram.com/language/ref/CarlsonRF.html}, note=[Accessed: 26-March-2025
]}