CarlsonRF

CarlsonRF[x,y,z]

gives the Carlson's elliptic integral .

Details

  • Mathematical function, suitable for both symbolic and numerical manipulation.
  • For , and , .
  • CarlsonRF[x,y,z] has a branch cut discontinuity for .
  • For certain arguments, CarlsonRF automatically evaluates to exact values.
  • CarlsonRF can be evaluated to arbitrary numerical precision.
  • CarlsonRF automatically threads over lists.
  • CarlsonRF can be used with Interval and CenteredInterval objects. »

Examples

open allclose all

Basic Examples  (3)

Evaluate numerically:

Plot over a range of arguments:

CarlsonRF is related to Legendre elliptic integral of the first kind TemplateBox[{phi, m}, EllipticF] for :

Scope  (10)

Numerical Evaluation  (6)

Evaluate numerically:

Evaluate at high precision:

Precision of the output tracks the precision of the input:

Evaluate for complex arguments:

Evaluate efficiently at high precision:

CarlsonRF threads elementwise over lists:

CarlsonRF can be used with Interval and CenteredInterval objects:

Specific Values  (2)

Simple exact results are generated automatically:

The case of complete elliptic integral:

Derivatives  (1)

Derivative of CarlsonRF is proportional to CarlsonRD:

Function Representations  (1)

TraditionalForm formatting:

Applications  (3)

Distance along a meridian of the Earth:

Compare with the result of GeoDistance:

Expectation value of the reciprocal square root of a quadratic form over a normal distribution:

Compare with closed-form result in terms of CarlsonRF:

Express EllipticLog in terms of CarlsonRF:

Wolfram Research (2021), CarlsonRF, Wolfram Language function, https://reference.wolfram.com/language/ref/CarlsonRF.html (updated 2023).

Text

Wolfram Research (2021), CarlsonRF, Wolfram Language function, https://reference.wolfram.com/language/ref/CarlsonRF.html (updated 2023).

CMS

Wolfram Language. 2021. "CarlsonRF." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2023. https://reference.wolfram.com/language/ref/CarlsonRF.html.

APA

Wolfram Language. (2021). CarlsonRF. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/CarlsonRF.html

BibTeX

@misc{reference.wolfram_2023_carlsonrf, author="Wolfram Research", title="{CarlsonRF}", year="2023", howpublished="\url{https://reference.wolfram.com/language/ref/CarlsonRF.html}", note=[Accessed: 01-October-2023 ]}

BibLaTeX

@online{reference.wolfram_2023_carlsonrf, organization={Wolfram Research}, title={CarlsonRF}, year={2023}, url={https://reference.wolfram.com/language/ref/CarlsonRF.html}, note=[Accessed: 01-October-2023 ]}