Chebyshev2FilterModel
Details

- Chebyshev2FilterModel returns the filter as a TransferFunctionModel.
- Chebyshev2FilterModel[{n,ω}] returns a lowpass filter with attenuation of
(approximately 3 dB) at frequency ω.
- Chebyshev2FilterModel[n] uses the cutoff frequency of 1.
- Filter specification {"type",spec} can be any of the following:
-
{"Lowpass",{ωp,ωs},{ap,as}} lowpass filter using passband and stopband frequencies and attenuations {"Highpass",{ωs,ωp},{as,ap}} highpass filter {"Bandpass",{ωs1,ωp1,ωp2,ωs2},{as,ap}} bandpass filter {"Bandstop",{ωp1,ωs1,ωs2,ωp2},{ap,as}} bandstop filter - Frequency values should be given in an ascending order.
- Values ap and as are respectively absolute values of passband and stopband attenuations.
- Given a gain fraction
, the attenuation is
.
Examples
open allclose allBasic Examples (1)Summary of the most common use cases
Scope (7)Survey of the scope of standard use cases
A symbolic representation of an order 2 lowpass filter:

https://wolfram.com/xid/0k2n7di5tjmfbf3ds5p-b6f36i

Exact computation of the model:

https://wolfram.com/xid/0k2n7di5tjmfbf3ds5p-m1h6eu

Computation of the model with precision 24:

https://wolfram.com/xid/0k2n7di5tjmfbf3ds5p-6sdcvs

Create a filter model using the variable s:

https://wolfram.com/xid/0k2n7di5tjmfbf3ds5p-kvokb4

Create a lowpass Chebyshev type 2 filter:

https://wolfram.com/xid/0k2n7di5tjmfbf3ds5p-5vax1w

Create a highpass Chebyshev type 2 filter:

https://wolfram.com/xid/0k2n7di5tjmfbf3ds5p-ptjo49

Create a bandpass Chebyshev type 2 filter:

https://wolfram.com/xid/0k2n7di5tjmfbf3ds5p-p6d6sm

https://wolfram.com/xid/0k2n7di5tjmfbf3ds5p-s8yf1q

Create a bandstop Chebyshev type 2 filter:

https://wolfram.com/xid/0k2n7di5tjmfbf3ds5p-vq55om

https://wolfram.com/xid/0k2n7di5tjmfbf3ds5p-2wjc7x

Applications (6)Sample problems that can be solved with this function
Create a lowpass Chebyshev type 2 filter:

https://wolfram.com/xid/0k2n7di5tjmfbf3ds5p-3wi1v
Filter out high-frequency noise from a sinusoidal signal:

https://wolfram.com/xid/0k2n7di5tjmfbf3ds5p-ifgc2o
Chebyshev type 2 filter phase shifts the response by Arg[tf[ω ]], where ω is the frequency of the input sinusoid:

https://wolfram.com/xid/0k2n7di5tjmfbf3ds5p-2jrez2


https://wolfram.com/xid/0k2n7di5tjmfbf3ds5p-0cddd

Create a highpass Chebyshev type 2 filter from the lowpass prototype:

https://wolfram.com/xid/0k2n7di5tjmfbf3ds5p-n0gy7m
Filter out low-frequency sinusoid from the input:

https://wolfram.com/xid/0k2n7di5tjmfbf3ds5p-ztenhq

Design a digital FIR lowpass filter using the Chebyshev 2 approximation that satisfies the following passband and stopband frequencies and attenuations:

https://wolfram.com/xid/0k2n7di5tjmfbf3ds5p-b807jm
Obtain the equivalent analog frequencies, assuming a sampling period of 1:

https://wolfram.com/xid/0k2n7di5tjmfbf3ds5p-e72bzc

Compute the analog Chebyshev 1 transfer function:

https://wolfram.com/xid/0k2n7di5tjmfbf3ds5p-h6kooi

Convert to discrete-time model:

https://wolfram.com/xid/0k2n7di5tjmfbf3ds5p-hbv1kc


https://wolfram.com/xid/0k2n7di5tjmfbf3ds5p-49i4n

Create an FIR approximation of a discrete-time Chebyshev type 2 IIR filter.
Implement a lowpass digital Chebyshev type 2 filter:

https://wolfram.com/xid/0k2n7di5tjmfbf3ds5p-buj3xd

Obtain the impulse response of the IIR filter and evaluate for the desired number of samples:

https://wolfram.com/xid/0k2n7di5tjmfbf3ds5p-carst7


https://wolfram.com/xid/0k2n7di5tjmfbf3ds5p-obd08

Smooth financial data using an FIR approximation of a Chebyshev filter:

https://wolfram.com/xid/0k2n7di5tjmfbf3ds5p-detozt

Filter an image using a lowpass Chebyshev type 2 filter:

https://wolfram.com/xid/0k2n7di5tjmfbf3ds5p-yc21cz

Filter an image using a highpass Chebyshev type 2 filter:

https://wolfram.com/xid/0k2n7di5tjmfbf3ds5p-nmld7q

Properties & Relations (5)Properties of the function, and connections to other functions
Compare Chebyshev type 1 and type 2 lowpass filters:

https://wolfram.com/xid/0k2n7di5tjmfbf3ds5p-7vwi3k


https://wolfram.com/xid/0k2n7di5tjmfbf3ds5p-uz37cn


https://wolfram.com/xid/0k2n7di5tjmfbf3ds5p-4o59cn

Extract the order of the Chebyshev type 2 polynomial:

https://wolfram.com/xid/0k2n7di5tjmfbf3ds5p-xr2bzi

Find the poles and zeros of a Chebyshev type 2 filter:

https://wolfram.com/xid/0k2n7di5tjmfbf3ds5p-8mo9vy
Plot poles and zeros of the Chebyshev filter:

https://wolfram.com/xid/0k2n7di5tjmfbf3ds5p-cbtnsh

Implement a lowpass digital Chebyshev type 2 filter:

https://wolfram.com/xid/0k2n7di5tjmfbf3ds5p-ipgw7i

Plot poles and zeros of the digital Chebyshev type 2 filter:

https://wolfram.com/xid/0k2n7di5tjmfbf3ds5p-bu0m6

Convert a lowpass filter to high pass:

https://wolfram.com/xid/0k2n7di5tjmfbf3ds5p-jsttxk


https://wolfram.com/xid/0k2n7di5tjmfbf3ds5p-qzc40d

Wolfram Research (2012), Chebyshev2FilterModel, Wolfram Language function, https://reference.wolfram.com/language/ref/Chebyshev2FilterModel.html.
Text
Wolfram Research (2012), Chebyshev2FilterModel, Wolfram Language function, https://reference.wolfram.com/language/ref/Chebyshev2FilterModel.html.
Wolfram Research (2012), Chebyshev2FilterModel, Wolfram Language function, https://reference.wolfram.com/language/ref/Chebyshev2FilterModel.html.
CMS
Wolfram Language. 2012. "Chebyshev2FilterModel." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/Chebyshev2FilterModel.html.
Wolfram Language. 2012. "Chebyshev2FilterModel." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/Chebyshev2FilterModel.html.
APA
Wolfram Language. (2012). Chebyshev2FilterModel. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Chebyshev2FilterModel.html
Wolfram Language. (2012). Chebyshev2FilterModel. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Chebyshev2FilterModel.html
BibTeX
@misc{reference.wolfram_2025_chebyshev2filtermodel, author="Wolfram Research", title="{Chebyshev2FilterModel}", year="2012", howpublished="\url{https://reference.wolfram.com/language/ref/Chebyshev2FilterModel.html}", note=[Accessed: 03-June-2025
]}
BibLaTeX
@online{reference.wolfram_2025_chebyshev2filtermodel, organization={Wolfram Research}, title={Chebyshev2FilterModel}, year={2012}, url={https://reference.wolfram.com/language/ref/Chebyshev2FilterModel.html}, note=[Accessed: 03-June-2025
]}