# FresnelC

FresnelC[z]

gives the Fresnel integral .

# Details

• Mathematical function, suitable for both symbolic and numerical manipulation.
• FresnelC[z] is given by .
• FresnelC[z] is an entire function of z with no branch cut discontinuities.
• For certain special arguments, FresnelC automatically evaluates to exact values.
• FresnelC can be evaluated to arbitrary numerical precision.
• FresnelC automatically threads over lists.
• FresnelC can be used with Interval and CenteredInterval objects. »

# Examples

open allclose all

## Basic Examples(5)

Evaluate numerically:

Plot over a subset of the reals:

Plot over a subset of the complexes:

Series expansion at the origin:

Series expansion at Infinity:

## Scope(41)

### Numerical Evaluation(5)

Evaluate numerically to high precision:

The precision of the output tracks the precision of the input:

Evaluate for complex arguments:

Evaluate FresnelC efficiently at high precision:

FresnelC threads elementwise over lists and matrices:

FresnelC can be used with Interval and CenteredInterval objects:

### Specific Values(3)

Value at a fixed point:

Values at infinity:

Find a local maximum as a root of :

### Visualization(2)

Plot the FresnelC function:

Plot the real part of :

Plot the imaginary part of :

### Function Properties(10)

FresnelC is defined for all real and complex values:

Approximate function range of FresnelC:

FresnelC is an odd function:

FresnelC is an analytic function of x:

FresnelC is neither non-increasing nor non-decreasing:

FresnelC is not injective:

FresnelC is not surjective:

FresnelC is neither non-negative nor non-positive:

FresnelC has no singularities or discontinuities:

Neither convex nor concave:

### Differentiation(3)

First derivative:

Higher derivatives:

Formula for the derivative:

### Integration(3)

Indefinite integral of FresnelC:

Definite integral of an odd integrand over an interval centered at the origin is 0:

More integrals:

### Series Expansions(5)

Taylor expansion for FresnelC:

Plot the first three approximations for FresnelC around :

General term in the series expansion of FresnelC:

Find series expansion at infinity:

Give the result for an arbitrary symbolic direction :

FresnelC can be applied to power series:

### Integral Transforms(2)

Compute the Laplace transform using LaplaceTransform:

### Function Identities and Simplifications(3)

Verify an identity relating HypergeometricPFQ to FresnelC:

Simplify an integral to FresnelC:

Argument simplifications:

### Function Representations(5)

Integral representation:

Relation to the error function Erf:

FresnelC can be represented as a DifferentialRoot:

FresnelC can be represented in terms of MeijerG:

## Applications(5)

Intensity of a wave diffracted by a halfplane:

Plot a Cornu spiral:

A solution of the timedependent 1D Schrödinger equation for a sudden opening of a shutter:

Check the Schrödinger equation:

Plot the timedependent solution:

Plot of FresnelC along a circle in the complex plane:

Fractional derivative of Sin:

Derivative of order of Sin:

Plot a smooth transition between the derivative and integral of Sin:

## Properties & Relations(6)

Use FullSimplify to simplify expressions containing Fresnel integrals:

Find a numerical root:

Obtain FresnelC from integrals and sums:

Solve a differential equation:

Calculate the Wronskian:

Compare with Wronskian:

Integrals:

Integral transforms:

## Possible Issues(3)

FresnelC can take large values for moderatesize arguments:

A larger setting for \$MaxExtraPrecision can be needed:

Some references use a different convention for the Fresnel integrals:

Wolfram Research (1996), FresnelC, Wolfram Language function, https://reference.wolfram.com/language/ref/FresnelC.html (updated 2022).

#### Text

Wolfram Research (1996), FresnelC, Wolfram Language function, https://reference.wolfram.com/language/ref/FresnelC.html (updated 2022).

#### CMS

Wolfram Language. 1996. "FresnelC." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2022. https://reference.wolfram.com/language/ref/FresnelC.html.

#### APA

Wolfram Language. (1996). FresnelC. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FresnelC.html

#### BibTeX

@misc{reference.wolfram_2023_fresnelc, author="Wolfram Research", title="{FresnelC}", year="2022", howpublished="\url{https://reference.wolfram.com/language/ref/FresnelC.html}", note=[Accessed: 24-September-2023 ]}

#### BibLaTeX

@online{reference.wolfram_2023_fresnelc, organization={Wolfram Research}, title={FresnelC}, year={2022}, url={https://reference.wolfram.com/language/ref/FresnelC.html}, note=[Accessed: 24-September-2023 ]}