EulerCharacteristic
✖
EulerCharacteristic
Details

- EulerCharacteristic is also known as Euler number or Euler–Poincaré characteristic.
- EulerCharacteristic is a topological invariant that describes the shape of the polyhedron, regardless of the way it is bent.
- The Euler characteristic
for a polyhedron is given by
, where
is the number of vertices,
the number of edges and
the number of faces.
- A polyhedron with
voids and
tunnels satisfies
.
- The Euler characteristic for a mesh region is given by χ=
(-1)nMeshCellCount[poly,n].
Examples
open allclose allBasic Examples (1)Summary of the most common use cases
Scope (4)Survey of the scope of standard use cases
EulerCharacteristic works on polyhedrons:

https://wolfram.com/xid/0dqvplzptbm-cpw0pk

https://wolfram.com/xid/0dqvplzptbm-nc5g0k


https://wolfram.com/xid/0dqvplzptbm-jmbj0g


https://wolfram.com/xid/0dqvplzptbm-3o58n0


https://wolfram.com/xid/0dqvplzptbm-ruxc6r


https://wolfram.com/xid/0dqvplzptbm-x0euoi

https://wolfram.com/xid/0dqvplzptbm-ho2agf

Polyhedrons with disconnected components:

https://wolfram.com/xid/0dqvplzptbm-inu7wu


https://wolfram.com/xid/0dqvplzptbm-npcjle

EulerCharacteristic works on mesh regions:

https://wolfram.com/xid/0dqvplzptbm-ixfnxk


https://wolfram.com/xid/0dqvplzptbm-7j6wmc

Properties & Relations (3)Properties of the function, and connections to other functions
Use EulerCharacteristic to compute PolyhedronGenus for a simple polyhedron:

https://wolfram.com/xid/0dqvplzptbm-vvce7b

https://wolfram.com/xid/0dqvplzptbm-jfkzmb


https://wolfram.com/xid/0dqvplzptbm-bf9i3o

Euler characteristic of a convex polyhedron equals 2:

https://wolfram.com/xid/0dqvplzptbm-3uzite

https://wolfram.com/xid/0dqvplzptbm-z6nm5w


https://wolfram.com/xid/0dqvplzptbm-co5kpj

Euler characteristic of UniformPolyhedron is 2:

https://wolfram.com/xid/0dqvplzptbm-drl6fq


https://wolfram.com/xid/0dqvplzptbm-6kl0pb

Wolfram Research (2019), EulerCharacteristic, Wolfram Language function, https://reference.wolfram.com/language/ref/EulerCharacteristic.html.
Text
Wolfram Research (2019), EulerCharacteristic, Wolfram Language function, https://reference.wolfram.com/language/ref/EulerCharacteristic.html.
Wolfram Research (2019), EulerCharacteristic, Wolfram Language function, https://reference.wolfram.com/language/ref/EulerCharacteristic.html.
CMS
Wolfram Language. 2019. "EulerCharacteristic." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/EulerCharacteristic.html.
Wolfram Language. 2019. "EulerCharacteristic." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/EulerCharacteristic.html.
APA
Wolfram Language. (2019). EulerCharacteristic. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/EulerCharacteristic.html
Wolfram Language. (2019). EulerCharacteristic. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/EulerCharacteristic.html
BibTeX
@misc{reference.wolfram_2025_eulercharacteristic, author="Wolfram Research", title="{EulerCharacteristic}", year="2019", howpublished="\url{https://reference.wolfram.com/language/ref/EulerCharacteristic.html}", note=[Accessed: 16-May-2025
]}
BibLaTeX
@online{reference.wolfram_2025_eulercharacteristic, organization={Wolfram Research}, title={EulerCharacteristic}, year={2019}, url={https://reference.wolfram.com/language/ref/EulerCharacteristic.html}, note=[Accessed: 16-May-2025
]}