WOLFRAM

Hexahedron[{p1,p2,,p8}]

represents a filled hexahedron with corners p1, p2, , p8.

Hexahedron[{{p1,1,p1,2,,p1,8},{p2,1,},}]

represents a collection of hexahedra.

Details and Options

Examples

open allclose all

Basic Examples  (3)Summary of the most common use cases

A hexahedron:

Out[1]=1

A styled hexahedron:

Out[2]=2

Volume and centroid:

Out[2]=2
Out[3]=3

Scope  (18)Survey of the scope of standard use cases

Graphics  (8)

Specification  (2)

A single hexahedron:

Out[2]=2

Multiple hexahedrons:

Out[3]=3

Styling  (3)

FaceForm and EdgeForm can be used to specify the styles of the faces and edges:

Out[2]=2

Apply a Texture to the faces:

Out[2]=2

Assign VertexColors to vertices:

Out[2]=2

Coordinates  (3)

Specify coordinates by fractions of the plot range:

Out[2]=2

Specify scaled offsets from the ordinary coordinates:

Out[2]=2

Points can be Dynamic:

Out[1]=1

Regions  (10)

Embedding dimension is the dimension of the space in which the hexahedron lives:

Out[2]=2

Geometric dimension is the dimension of the shape itself:

Out[3]=3

Membership testing:

Out[2]=2

Get conditions for point membership:

Out[3]=3

Volume:

Out[2]=2

Centroid:

Out[3]=3
Out[4]=4

Distance from a point:

Out[2]=2

The equidistance contours for a hexahedron:

Out[3]=3

Signed distance from a point:

Out[2]=2

Nearest point in the region:

Out[2]=2

Nearest points to an enclosing sphere:

Out[5]=5

A hexahedron is bounded:

Out[2]=2

Find its range:

Out[3]=3
Out[4]=4

Integrate over a hexahedron region:

Out[2]=2

Optimize over a hexahedron region:

Out[2]=2

Solve equations in a hexahedron region:

Out[2]=2

Applications  (4)Sample problems that can be solved with this function

Convert a Cuboid to a Hexahedron:

Out[2]=2
Out[3]=3

Convert a Parallelepiped to a Hexahedron:

Out[2]=2
Out[3]=3

Create a square frustum parameterized by base width, top width, and height:

Out[2]=2
Out[3]=3

Create a tiling of hexahedra:

Out[2]=2

Properties & Relations  (4)Properties of the function, and connections to other functions

Hexahedron is a generalization of a Cuboid in dimension 3:

Out[2]=2

A hexahedron can be represented as the union of five tetrahedra:

Out[2]=2

Point index list of tetrahedra vertices:

Out[4]=4

A hexahedron can also be represented as the union of six tetrahedra:

Out[3]=3

ImplicitRegion can represent any Hexahedron:

Out[2]=2

Neat Examples  (2)Surprising or curious use cases

Random collection of hexahedrons:

Out[1]=1

Sweep a hexahedron around an axis:

Out[2]=2
Wolfram Research (2014), Hexahedron, Wolfram Language function, https://reference.wolfram.com/language/ref/Hexahedron.html (updated 2019).
Wolfram Research (2014), Hexahedron, Wolfram Language function, https://reference.wolfram.com/language/ref/Hexahedron.html (updated 2019).

Text

Wolfram Research (2014), Hexahedron, Wolfram Language function, https://reference.wolfram.com/language/ref/Hexahedron.html (updated 2019).

Wolfram Research (2014), Hexahedron, Wolfram Language function, https://reference.wolfram.com/language/ref/Hexahedron.html (updated 2019).

CMS

Wolfram Language. 2014. "Hexahedron." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2019. https://reference.wolfram.com/language/ref/Hexahedron.html.

Wolfram Language. 2014. "Hexahedron." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2019. https://reference.wolfram.com/language/ref/Hexahedron.html.

APA

Wolfram Language. (2014). Hexahedron. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Hexahedron.html

Wolfram Language. (2014). Hexahedron. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Hexahedron.html

BibTeX

@misc{reference.wolfram_2025_hexahedron, author="Wolfram Research", title="{Hexahedron}", year="2019", howpublished="\url{https://reference.wolfram.com/language/ref/Hexahedron.html}", note=[Accessed: 02-May-2025 ]}

@misc{reference.wolfram_2025_hexahedron, author="Wolfram Research", title="{Hexahedron}", year="2019", howpublished="\url{https://reference.wolfram.com/language/ref/Hexahedron.html}", note=[Accessed: 02-May-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_hexahedron, organization={Wolfram Research}, title={Hexahedron}, year={2019}, url={https://reference.wolfram.com/language/ref/Hexahedron.html}, note=[Accessed: 02-May-2025 ]}

@online{reference.wolfram_2025_hexahedron, organization={Wolfram Research}, title={Hexahedron}, year={2019}, url={https://reference.wolfram.com/language/ref/Hexahedron.html}, note=[Accessed: 02-May-2025 ]}