Hexahedron
✖
Hexahedron
Details and Options

- Hexahedron can be used as a geometric region and a graphics primitive.
- Hexahedron represents a filled polyhedron given by the polygon faces {p4,p3,p2,p1}, {p1,p2,p6,p5}, {p2,p3,p7,p6}, {p3,p4,p8,p7}, {p4,p1,p5,p8}, and {p5,p6,p7,p8}.
- CanonicalizePolyhedron can be used to convert a hexahedron to an explicit Polyhedron object.
- Hexahedron can be used in Graphics3D.
- In graphics, the points pi can be Scaled and Dynamic expressions.
- Graphics rendering is affected by directives such as FaceForm, EdgeForm, Opacity, Texture, and color.
- The following options and settings can be used in graphics:
-
VertexColors Automatic vertex colors to be interpolated VertexNormals Automatic effective vertex normals for shading VertexTextureCoordinates None coordinates for textures

Examples
open allclose allBasic Examples (3)Summary of the most common use cases

https://wolfram.com/xid/0tqnzefqf8y3zm-f8gaof


https://wolfram.com/xid/0tqnzefqf8y3zm-sxptmj

https://wolfram.com/xid/0tqnzefqf8y3zm-84fmk


https://wolfram.com/xid/0tqnzefqf8y3zm-zpy9vm

https://wolfram.com/xid/0tqnzefqf8y3zm-kgn009


https://wolfram.com/xid/0tqnzefqf8y3zm-hd55qh

Scope (18)Survey of the scope of standard use cases
Graphics (8)
Specification (2)

https://wolfram.com/xid/0tqnzefqf8y3zm-ce4k03

https://wolfram.com/xid/0tqnzefqf8y3zm-ggb1ww


https://wolfram.com/xid/0tqnzefqf8y3zm-1c6641

https://wolfram.com/xid/0tqnzefqf8y3zm-h7cw3f

https://wolfram.com/xid/0tqnzefqf8y3zm-ppozsb

Styling (3)
FaceForm and EdgeForm can be used to specify the styles of the faces and edges:

https://wolfram.com/xid/0tqnzefqf8y3zm-38df6s

https://wolfram.com/xid/0tqnzefqf8y3zm-78t7nc

Apply a Texture to the faces:

https://wolfram.com/xid/0tqnzefqf8y3zm-vff8kd

https://wolfram.com/xid/0tqnzefqf8y3zm-5tt6t

Assign VertexColors to vertices:

https://wolfram.com/xid/0tqnzefqf8y3zm-2h0wgx

https://wolfram.com/xid/0tqnzefqf8y3zm-twbbe6

Coordinates (3)
Specify coordinates by fractions of the plot range:

https://wolfram.com/xid/0tqnzefqf8y3zm-prz04t

https://wolfram.com/xid/0tqnzefqf8y3zm-u8d4ip

Specify scaled offsets from the ordinary coordinates:

https://wolfram.com/xid/0tqnzefqf8y3zm-po136z

https://wolfram.com/xid/0tqnzefqf8y3zm-6qq3xm

Points can be Dynamic:

https://wolfram.com/xid/0tqnzefqf8y3zm-3sh852

Regions (10)
Embedding dimension is the dimension of the space in which the hexahedron lives:

https://wolfram.com/xid/0tqnzefqf8y3zm-e3gvsm

https://wolfram.com/xid/0tqnzefqf8y3zm-y220

Geometric dimension is the dimension of the shape itself:

https://wolfram.com/xid/0tqnzefqf8y3zm-bx9tom


https://wolfram.com/xid/0tqnzefqf8y3zm-j5s1r5

https://wolfram.com/xid/0tqnzefqf8y3zm-p89qc

Get conditions for point membership:

https://wolfram.com/xid/0tqnzefqf8y3zm-d9nxgd


https://wolfram.com/xid/0tqnzefqf8y3zm-se0twe

https://wolfram.com/xid/0tqnzefqf8y3zm-e06l44


https://wolfram.com/xid/0tqnzefqf8y3zm-gwq4b4


https://wolfram.com/xid/0tqnzefqf8y3zm-oknxhk


https://wolfram.com/xid/0tqnzefqf8y3zm-i8cqms

https://wolfram.com/xid/0tqnzefqf8y3zm-bruj1e

The equidistance contours for a hexahedron:

https://wolfram.com/xid/0tqnzefqf8y3zm-jdsxbg


https://wolfram.com/xid/0tqnzefqf8y3zm-h7eno

https://wolfram.com/xid/0tqnzefqf8y3zm-b7y6q0


https://wolfram.com/xid/0tqnzefqf8y3zm-6fqw5x

https://wolfram.com/xid/0tqnzefqf8y3zm-et4yza

Nearest points to an enclosing sphere:

https://wolfram.com/xid/0tqnzefqf8y3zm-e29k5d

https://wolfram.com/xid/0tqnzefqf8y3zm-5ksoo8

https://wolfram.com/xid/0tqnzefqf8y3zm-g70sch


https://wolfram.com/xid/0tqnzefqf8y3zm-yw9mlv

https://wolfram.com/xid/0tqnzefqf8y3zm-wv3700


https://wolfram.com/xid/0tqnzefqf8y3zm-p10u0d


https://wolfram.com/xid/0tqnzefqf8y3zm-h2d2dj

Integrate over a hexahedron region:

https://wolfram.com/xid/0tqnzefqf8y3zm-c81tiw

https://wolfram.com/xid/0tqnzefqf8y3zm-banwkr

Optimize over a hexahedron region:

https://wolfram.com/xid/0tqnzefqf8y3zm-fdvdlz

https://wolfram.com/xid/0tqnzefqf8y3zm-hyz4dq

Solve equations in a hexahedron region:

https://wolfram.com/xid/0tqnzefqf8y3zm-hzsonx

https://wolfram.com/xid/0tqnzefqf8y3zm-cn6ygq

Applications (4)Sample problems that can be solved with this function
Convert a Cuboid to a Hexahedron:

https://wolfram.com/xid/0tqnzefqf8y3zm-4oja0n

https://wolfram.com/xid/0tqnzefqf8y3zm-0walhg


https://wolfram.com/xid/0tqnzefqf8y3zm-k2amp6

Convert a Parallelepiped to a Hexahedron:

https://wolfram.com/xid/0tqnzefqf8y3zm-yhh4gh

https://wolfram.com/xid/0tqnzefqf8y3zm-swkgj9


https://wolfram.com/xid/0tqnzefqf8y3zm-lexi2a

Create a square frustum parameterized by base width, top width, and height:

https://wolfram.com/xid/0tqnzefqf8y3zm-fezsch

https://wolfram.com/xid/0tqnzefqf8y3zm-mc91r4


https://wolfram.com/xid/0tqnzefqf8y3zm-qxe5bt


https://wolfram.com/xid/0tqnzefqf8y3zm-1ykska

https://wolfram.com/xid/0tqnzefqf8y3zm-o8u6ym

Properties & Relations (4)Properties of the function, and connections to other functions
Hexahedron is a generalization of a Cuboid in dimension 3:

https://wolfram.com/xid/0tqnzefqf8y3zm-c1q2ki

https://wolfram.com/xid/0tqnzefqf8y3zm-0uif6

A hexahedron can be represented as the union of five tetrahedra:

https://wolfram.com/xid/0tqnzefqf8y3zm-u32usv

https://wolfram.com/xid/0tqnzefqf8y3zm-h426c

Point index list of tetrahedra vertices:

https://wolfram.com/xid/0tqnzefqf8y3zm-mtv2bj

https://wolfram.com/xid/0tqnzefqf8y3zm-sos1yg

A hexahedron can also be represented as the union of six tetrahedra:

https://wolfram.com/xid/0tqnzefqf8y3zm-jufwh0

https://wolfram.com/xid/0tqnzefqf8y3zm-ehckv7

https://wolfram.com/xid/0tqnzefqf8y3zm-cc9t05

ImplicitRegion can represent any Hexahedron:

https://wolfram.com/xid/0tqnzefqf8y3zm-hw5ae3

https://wolfram.com/xid/0tqnzefqf8y3zm-jmnohi

Neat Examples (2)Surprising or curious use cases
Wolfram Research (2014), Hexahedron, Wolfram Language function, https://reference.wolfram.com/language/ref/Hexahedron.html (updated 2019).
Text
Wolfram Research (2014), Hexahedron, Wolfram Language function, https://reference.wolfram.com/language/ref/Hexahedron.html (updated 2019).
Wolfram Research (2014), Hexahedron, Wolfram Language function, https://reference.wolfram.com/language/ref/Hexahedron.html (updated 2019).
CMS
Wolfram Language. 2014. "Hexahedron." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2019. https://reference.wolfram.com/language/ref/Hexahedron.html.
Wolfram Language. 2014. "Hexahedron." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2019. https://reference.wolfram.com/language/ref/Hexahedron.html.
APA
Wolfram Language. (2014). Hexahedron. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Hexahedron.html
Wolfram Language. (2014). Hexahedron. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Hexahedron.html
BibTeX
@misc{reference.wolfram_2025_hexahedron, author="Wolfram Research", title="{Hexahedron}", year="2019", howpublished="\url{https://reference.wolfram.com/language/ref/Hexahedron.html}", note=[Accessed: 02-May-2025
]}
BibLaTeX
@online{reference.wolfram_2025_hexahedron, organization={Wolfram Research}, title={Hexahedron}, year={2019}, url={https://reference.wolfram.com/language/ref/Hexahedron.html}, note=[Accessed: 02-May-2025
]}