WOLFRAM

FactorList[poly]

gives a list of the factors of a polynomial, together with their exponents.

Details and Options

  • The first element of the list is always the overall numerical factor. It is {1,1} if there is no overall numerical factor.
  • FactorList[poly,Modulus->p] factors modulo a prime p.
  • FactorList[poly,GaussianIntegers->True] allows Gaussian integer coefficients.
  • FactorList[poly,Extension->{a1,a2,}] allows coefficients that are arbitrary rational combinations of the ai.

Examples

open allclose all

Basic Examples  (2)Summary of the most common use cases

List the irreducible factors of polynomials:

Out[1]=1
Out[2]=2

List the irreducible factors of multivariate polynomials:

Out[1]=1

Scope  (11)Survey of the scope of standard use cases

Basic Uses  (4)

A univariate polynomial:

Out[1]=1

A multivariate polynomial:

Out[1]=1

A polynomial with multiple factors:

Out[1]=1

A rational function:

Out[1]=1

Advanced Uses  (7)

The irreducible factors over the Gaussian integers:

Out[1]=1

The irreducible factors over an algebraic extension:

Out[1]=1

The irreducible factors over the integers modulo 2:

Out[1]=1

The irreducible factors over a finite field:

Out[2]=2
Out[3]=3

The irreducible factors over an extension of a finite field:

A polynomial irreducible over factors after embedding in a larger field :

Out[2]=2
Out[3]=3

List factors of non-polynomial expressions:

Out[1]=1
Out[2]=2

List factors of a polynomial of degree :

Out[2]=2
Out[3]=3

Options  (7)Common values & functionality for each option

Extension  (4)

Factor over algebraic number fields:

Out[1]=1
Out[2]=2

Extension->Automatic automatically extends to a field that covers the coefficients:

Out[1]=1
Out[2]=2

Factor a polynomial with integer coefficients over a finite field:

Out[2]=2

Factor a polynomial with coefficients in a finite field:

Out[2]=2

Embedding in a larger field allows further factorization:

Out[4]=4

GaussianIntegers  (1)

Factor over Gaussian integers:

Out[1]=1
Out[2]=2

Modulus  (1)

Factor over finite fields:

Out[1]=1
Out[2]=2

Trig  (1)

Factor a trigonometric expression:

Out[1]=1

Applications  (2)Sample problems that can be solved with this function

FactorList can be useful in determining the behavior of functions:

Out[2]=2

has roots at and , at it does not cross the axis, and at it crosses the axis:

Out[3]=3

Show that a polynomial is a perfect square:

Compute the factors and note that the constant factor is positive:

Out[2]=2

Extract the exponents of nonconstant factors:

Out[3]=3

Check that every factor has even exponent and thus is a square:

Out[4]=4

Properties & Relations  (3)Properties of the function, and connections to other functions

FactorList gives a list of irreducible factors:

Out[1]=1

This multiplies the factors together:

Out[2]=2

Factor gives a product of factors:

Out[3]=3

Expand combines all the factors back together:

Out[4]=4

FactorSquareFreeList gives a list of square-free factors:

Out[1]=1

FactorInteger gives a list of prime factors of an integer:

Out[1]=1
Out[2]=2
Wolfram Research (1988), FactorList, Wolfram Language function, https://reference.wolfram.com/language/ref/FactorList.html (updated 2023).
Wolfram Research (1988), FactorList, Wolfram Language function, https://reference.wolfram.com/language/ref/FactorList.html (updated 2023).

Text

Wolfram Research (1988), FactorList, Wolfram Language function, https://reference.wolfram.com/language/ref/FactorList.html (updated 2023).

Wolfram Research (1988), FactorList, Wolfram Language function, https://reference.wolfram.com/language/ref/FactorList.html (updated 2023).

CMS

Wolfram Language. 1988. "FactorList." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2023. https://reference.wolfram.com/language/ref/FactorList.html.

Wolfram Language. 1988. "FactorList." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2023. https://reference.wolfram.com/language/ref/FactorList.html.

APA

Wolfram Language. (1988). FactorList. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FactorList.html

Wolfram Language. (1988). FactorList. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FactorList.html

BibTeX

@misc{reference.wolfram_2025_factorlist, author="Wolfram Research", title="{FactorList}", year="2023", howpublished="\url{https://reference.wolfram.com/language/ref/FactorList.html}", note=[Accessed: 27-March-2025 ]}

@misc{reference.wolfram_2025_factorlist, author="Wolfram Research", title="{FactorList}", year="2023", howpublished="\url{https://reference.wolfram.com/language/ref/FactorList.html}", note=[Accessed: 27-March-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_factorlist, organization={Wolfram Research}, title={FactorList}, year={2023}, url={https://reference.wolfram.com/language/ref/FactorList.html}, note=[Accessed: 27-March-2025 ]}

@online{reference.wolfram_2025_factorlist, organization={Wolfram Research}, title={FactorList}, year={2023}, url={https://reference.wolfram.com/language/ref/FactorList.html}, note=[Accessed: 27-March-2025 ]}