FindProcessParameters
finds the parameters p, q, … with starting values p0, q0, … .
Details and Options

- FindProcessParameters returns a list of replacement rules for the parameters in proc.
- The data can be given in the following forms:
-
{s0,…} a path with state si at time i {{t0,s0},…} a path with state si at time ti TemporalData[…] one or several paths - The times ti and states si must belong to the time and state domain of the process proc.
- The process proc can be any parametric scalar- or vector-valued process.
- The following options can be given:
-
AccuracyGoal Automatic the accuracy sought ProcessEstimator Automatic what process parameter estimator to use PrecisionGoal Automatic the precision sought WorkingPrecision Automatic the precision used in internal computations - The following basic settings can be used for ProcessEstimator:
-
Automatic automatically choose the parameter estimator "MaximumLikelihood" maximize the log likelihood directly "MethodOfMoments" match covariance - Special settings for ProcessEstimator are documented under the individual random process reference pages.
- Additional settings for time series processes include "MaximumConditionalLikelihood" and "SpectralEstimator".
- Additional settings for HiddenMarkovProcess include "BaumWelch" and "ViterbiTraining".
Examples
open allclose allBasic Examples (2)Summary of the most common use cases
Estimate the parameter of a PoissonProcess:

https://wolfram.com/xid/0fq46jwannkir-87m94z

https://wolfram.com/xid/0fq46jwannkir-ntrd4p


https://wolfram.com/xid/0fq46jwannkir-bm24nr

Compare simulations of the estimated process to the original data:

https://wolfram.com/xid/0fq46jwannkir-hb971p

https://wolfram.com/xid/0fq46jwannkir-ijidg5

Find the parameters for an ARProcess:

https://wolfram.com/xid/0fq46jwannkir-oul0zw

https://wolfram.com/xid/0fq46jwannkir-kv3pzl


https://wolfram.com/xid/0fq46jwannkir-jchbvw

Compare correlation functions for data and the estimated process:

https://wolfram.com/xid/0fq46jwannkir-crx03b

https://wolfram.com/xid/0fq46jwannkir-f03fu8

https://wolfram.com/xid/0fq46jwannkir-i2u3tg

Scope (9)Survey of the scope of standard use cases
Parametric Processes (3)
Estimate the parameter for a RandomWalkProcess:

https://wolfram.com/xid/0fq46jwannkir-oy6ao1

https://wolfram.com/xid/0fq46jwannkir-ir45un


https://wolfram.com/xid/0fq46jwannkir-onmzof

Estimate the parameters for a RenewalProcess:

https://wolfram.com/xid/0fq46jwannkir-b2qqzq

https://wolfram.com/xid/0fq46jwannkir-zkzjr


https://wolfram.com/xid/0fq46jwannkir-ddwrlu

Estimate the parameters for a Wiener process:

https://wolfram.com/xid/0fq46jwannkir-b4q52

https://wolfram.com/xid/0fq46jwannkir-e93vf3

Time Series Processes (3)
Estimate the parameters for an ARProcess:

https://wolfram.com/xid/0fq46jwannkir-cvszuw

https://wolfram.com/xid/0fq46jwannkir-rfo3pl

https://wolfram.com/xid/0fq46jwannkir-l8kdsv


https://wolfram.com/xid/0fq46jwannkir-c0klru


https://wolfram.com/xid/0fq46jwannkir-ds1qpl

Estimate an ARMAProcess:

https://wolfram.com/xid/0fq46jwannkir-c6smt7

https://wolfram.com/xid/0fq46jwannkir-ufs50l

https://wolfram.com/xid/0fq46jwannkir-ikoofc


https://wolfram.com/xid/0fq46jwannkir-h55k41


https://wolfram.com/xid/0fq46jwannkir-i1nooj

Provide initial values for the estimation of an ARProcess:

https://wolfram.com/xid/0fq46jwannkir-mudo3o

https://wolfram.com/xid/0fq46jwannkir-sy5tiy

Solve for repeated parameters:

https://wolfram.com/xid/0fq46jwannkir-jq07g

https://wolfram.com/xid/0fq46jwannkir-casyxt

Queueing Processes (2)
Estimate the arrival and service rates for an M/M/1 queue:

https://wolfram.com/xid/0fq46jwannkir-baqdm5

https://wolfram.com/xid/0fq46jwannkir-dw93n7


https://wolfram.com/xid/0fq46jwannkir-hwt1y2

Use the corresponding random path for the data:

https://wolfram.com/xid/0fq46jwannkir-p9jw4

Estimate the arrival rate for an M/M/1 queue:

https://wolfram.com/xid/0fq46jwannkir-cklfom

https://wolfram.com/xid/0fq46jwannkir-b2st24


https://wolfram.com/xid/0fq46jwannkir-clw5hv

https://wolfram.com/xid/0fq46jwannkir-j2sft6

Options (5)Common values & functionality for each option
WorkingPrecision (1)
Estimate process parameters using default machine precision:

https://wolfram.com/xid/0fq46jwannkir-hy8xm1

https://wolfram.com/xid/0fq46jwannkir-fm09r4


https://wolfram.com/xid/0fq46jwannkir-cxgk21

https://wolfram.com/xid/0fq46jwannkir-bje0vl

ProcessEstimator (4)
Maximum likelihood for a parametric process:

https://wolfram.com/xid/0fq46jwannkir-2s6tu4

https://wolfram.com/xid/0fq46jwannkir-78ksl6


https://wolfram.com/xid/0fq46jwannkir-uhijoi

https://wolfram.com/xid/0fq46jwannkir-w76fg5

Method of moments for a parametric process:

https://wolfram.com/xid/0fq46jwannkir-fclfcl

https://wolfram.com/xid/0fq46jwannkir-sghs27


https://wolfram.com/xid/0fq46jwannkir-qfbb8d

https://wolfram.com/xid/0fq46jwannkir-2qssm8

Maximize conditional likelihood for a time series process:

https://wolfram.com/xid/0fq46jwannkir-0a5hy1

https://wolfram.com/xid/0fq46jwannkir-n9momy

Spectral estimator for a time series process:

https://wolfram.com/xid/0fq46jwannkir-tsq7b4

https://wolfram.com/xid/0fq46jwannkir-ghncbm

Applications (2)Sample problems that can be solved with this function
Model the mean daily temperature for Champaign in August 2012:

https://wolfram.com/xid/0fq46jwannkir-cz01f1

https://wolfram.com/xid/0fq46jwannkir-k66ryv


https://wolfram.com/xid/0fq46jwannkir-nhqqqg


https://wolfram.com/xid/0fq46jwannkir-4c4xkj


https://wolfram.com/xid/0fq46jwannkir-ezwc4f

Compare CorrelationFunction of the model and the data:

https://wolfram.com/xid/0fq46jwannkir-dbor6k

The daily exchange rates of the euro to the dollar from May 2012 through September 2012:

https://wolfram.com/xid/0fq46jwannkir-z0cz9j

https://wolfram.com/xid/0fq46jwannkir-ksytjw


https://wolfram.com/xid/0fq46jwannkir-jm5uvi

Fit an AR process to the exchange rates:

https://wolfram.com/xid/0fq46jwannkir-1lkzx3


https://wolfram.com/xid/0fq46jwannkir-ctn5nr

Forecast for 20 business days ahead:

https://wolfram.com/xid/0fq46jwannkir-3da2v4

Plot the forecast with original data:

https://wolfram.com/xid/0fq46jwannkir-x82zye

Properties & Relations (2)Properties of the function, and connections to other functions
FindProcessParameters returns a list of parameter estimates for a process:

https://wolfram.com/xid/0fq46jwannkir-fi0nv6

https://wolfram.com/xid/0fq46jwannkir-nuv6dg

EstimatedProcess estimates the parametric process:

https://wolfram.com/xid/0fq46jwannkir-g1wonv

FindProcessParameters returns a list of parameter estimates for a process:

https://wolfram.com/xid/0fq46jwannkir-fa9tm0

https://wolfram.com/xid/0fq46jwannkir-wtkc3

FindDistributionParameters returns a list of parameter estimates for a distribution:

https://wolfram.com/xid/0fq46jwannkir-1dde8

https://wolfram.com/xid/0fq46jwannkir-yq9vm

Wolfram Research (2012), FindProcessParameters, Wolfram Language function, https://reference.wolfram.com/language/ref/FindProcessParameters.html.
Text
Wolfram Research (2012), FindProcessParameters, Wolfram Language function, https://reference.wolfram.com/language/ref/FindProcessParameters.html.
Wolfram Research (2012), FindProcessParameters, Wolfram Language function, https://reference.wolfram.com/language/ref/FindProcessParameters.html.
CMS
Wolfram Language. 2012. "FindProcessParameters." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/FindProcessParameters.html.
Wolfram Language. 2012. "FindProcessParameters." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/FindProcessParameters.html.
APA
Wolfram Language. (2012). FindProcessParameters. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FindProcessParameters.html
Wolfram Language. (2012). FindProcessParameters. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FindProcessParameters.html
BibTeX
@misc{reference.wolfram_2025_findprocessparameters, author="Wolfram Research", title="{FindProcessParameters}", year="2012", howpublished="\url{https://reference.wolfram.com/language/ref/FindProcessParameters.html}", note=[Accessed: 02-June-2025
]}
BibLaTeX
@online{reference.wolfram_2025_findprocessparameters, organization={Wolfram Research}, title={FindProcessParameters}, year={2012}, url={https://reference.wolfram.com/language/ref/FindProcessParameters.html}, note=[Accessed: 02-June-2025
]}