FindDistributionParameters
✖
FindDistributionParameters
finds the parameter estimates for the distribution dist from data.
finds the parameters p, q, … with starting values p0, q0, ….
Details and Options

- FindDistributionParameters returns a list of replacement rules for the parameters in dist.
- The data must be a list of possible outcomes from the given distribution dist.
- The distribution dist can be any parametric univariate, multivariate, or derived distribution with unknown parameters.
- The following options can be given:
-
AccuracyGoal Automatic the accuracy sought ParameterEstimator "MaximumLikelihood" what parameter estimator to use PrecisionGoal Automatic the precision sought WorkingPrecision Automatic the precision used in internal computations - The following basic settings can be used for ParameterEstimator:
-
"MaximumLikelihood" maximize the log‐likelihood function "MethodOfMoments" match raw moments "MethodOfCentralMoments" match central moments "MethodOfCumulants" match cumulants "MethodOfFactorialMoments" match factorial moments - The maximum likelihood method attempts to maximize the log-likelihood function
, where
are the distribution parameters and
is the PDF of the distribution.
- The method of moments solves
,
,
where
is the
sample moment and
is the
moment of the distribution with parameters
.
- Method-of-moment-based estimators may not satisfy all restrictions on parameters.
Examples
open allclose allBasic Examples (3)Summary of the most common use cases
Obtain the maximum likelihood parameter estimates assuming a Laplace distribution:

https://wolfram.com/xid/0elts4n1fh6o5lv-fm0bw

Obtain the method of moments estimates:

https://wolfram.com/xid/0elts4n1fh6o5lv-xr2lh

Estimate parameters for a multivariate distribution:

https://wolfram.com/xid/0elts4n1fh6o5lv-blkneb

https://wolfram.com/xid/0elts4n1fh6o5lv-c7rr12

Compare the difference between the original and estimated PDFs:

https://wolfram.com/xid/0elts4n1fh6o5lv-dqcr77

Estimate parameters from quantity data:

https://wolfram.com/xid/0elts4n1fh6o5lv-fis4jx


https://wolfram.com/xid/0elts4n1fh6o5lv-2xwdq

Scope (15)Survey of the scope of standard use cases
Basic Uses (5)
Estimate both parameters for a binomial distribution:

https://wolfram.com/xid/0elts4n1fh6o5lv-fo3xut

https://wolfram.com/xid/0elts4n1fh6o5lv-b5qgnt

Estimate p, assuming n is known:

https://wolfram.com/xid/0elts4n1fh6o5lv-fjpgxw

Estimate n, assuming p is known:

https://wolfram.com/xid/0elts4n1fh6o5lv-coeb7e

Get the distribution with maximum likelihood parameter estimate for a particular family:

https://wolfram.com/xid/0elts4n1fh6o5lv-mkxzvl

https://wolfram.com/xid/0elts4n1fh6o5lv-xqjzb

Check goodness of fit by comparing a histogram of the data and the estimate's PDF:

https://wolfram.com/xid/0elts4n1fh6o5lv-chdlxh

Perform goodness-of-fit tests with null distribution from res:

https://wolfram.com/xid/0elts4n1fh6o5lv-h79ysd

Perform tests correcting for estimation of the parameter:

https://wolfram.com/xid/0elts4n1fh6o5lv-p8osoh

Estimate parameters by maximizing the log‐likelihood:

https://wolfram.com/xid/0elts4n1fh6o5lv-cvbqgt

https://wolfram.com/xid/0elts4n1fh6o5lv-i7a7vi

Plot the log‐likelihood function to visually check that the solution is optimal:

https://wolfram.com/xid/0elts4n1fh6o5lv-kudrs0

Visualize a log‐likelihood surface to find rough values for the parameters:

https://wolfram.com/xid/0elts4n1fh6o5lv-hh5i95

https://wolfram.com/xid/0elts4n1fh6o5lv-e00bj2

Supply those rough values as starting values for the estimation:

https://wolfram.com/xid/0elts4n1fh6o5lv-pk23z

Mark the optimal point on the contour plot:

https://wolfram.com/xid/0elts4n1fh6o5lv-em6vw

Estimate the normal approximation of Poisson data:

https://wolfram.com/xid/0elts4n1fh6o5lv-f1ubxc

https://wolfram.com/xid/0elts4n1fh6o5lv-bmydzo


https://wolfram.com/xid/0elts4n1fh6o5lv-hkaonz

Univariate Parametric Distributions (2)
Estimate parameters for a continuous distribution:

https://wolfram.com/xid/0elts4n1fh6o5lv-gkoovd

https://wolfram.com/xid/0elts4n1fh6o5lv-ciirgu

Estimate parameters for a discrete distribution:

https://wolfram.com/xid/0elts4n1fh6o5lv-0quwi

https://wolfram.com/xid/0elts4n1fh6o5lv-g86gb5

Compare the fitted and empirical CDFs:

https://wolfram.com/xid/0elts4n1fh6o5lv-uw5ad

Multivariate Parametric Distributions (2)
Estimate parameters for a discrete multivariate distribution:

https://wolfram.com/xid/0elts4n1fh6o5lv-huw5eo

https://wolfram.com/xid/0elts4n1fh6o5lv-ish72

Estimate parameters for a continuous multivariate distribution:

https://wolfram.com/xid/0elts4n1fh6o5lv-dhbwo8

https://wolfram.com/xid/0elts4n1fh6o5lv-fx7s83

Visualize the density functions for the marginal distributions:

https://wolfram.com/xid/0elts4n1fh6o5lv-iyla3o

Obtain the covariance matrix from the formula:

https://wolfram.com/xid/0elts4n1fh6o5lv-bj72zx

Derived Distributions (6)
Estimate parameters for a truncated normal:

https://wolfram.com/xid/0elts4n1fh6o5lv-cnhaze

https://wolfram.com/xid/0elts4n1fh6o5lv-b4it3n

Estimate parameters for a constructed distribution:

https://wolfram.com/xid/0elts4n1fh6o5lv-xjacs


https://wolfram.com/xid/0elts4n1fh6o5lv-cz6xar

https://wolfram.com/xid/0elts4n1fh6o5lv-d6iz7v


https://wolfram.com/xid/0elts4n1fh6o5lv-y463r

Estimate parameters for a product distribution:

https://wolfram.com/xid/0elts4n1fh6o5lv-ove1pe

https://wolfram.com/xid/0elts4n1fh6o5lv-iqkewk

Estimate parameters for a copula distribution:

https://wolfram.com/xid/0elts4n1fh6o5lv-kajyvr

https://wolfram.com/xid/0elts4n1fh6o5lv-dmkw55

Estimate parameters for a component mixture:

https://wolfram.com/xid/0elts4n1fh6o5lv-g5qjhs

https://wolfram.com/xid/0elts4n1fh6o5lv-mtt53t

https://wolfram.com/xid/0elts4n1fh6o5lv-dsbx4n

Estimate the mixture probabilities assuming the component distributions are known:

https://wolfram.com/xid/0elts4n1fh6o5lv-x5j0n

https://wolfram.com/xid/0elts4n1fh6o5lv-x4o55

Visualize the two estimates against the data:

https://wolfram.com/xid/0elts4n1fh6o5lv-h2saa9

Estimate parameters for a distribution in specified units:

https://wolfram.com/xid/0elts4n1fh6o5lv-hs2lg0


https://wolfram.com/xid/0elts4n1fh6o5lv-g7ukc3

Options (4)Common values & functionality for each option
ParameterEstimator (3)
Estimate parameters by matching cumulants:

https://wolfram.com/xid/0elts4n1fh6o5lv-g5q7z

https://wolfram.com/xid/0elts4n1fh6o5lv-llvug

Other moment‐based methods typically give similar results:

https://wolfram.com/xid/0elts4n1fh6o5lv-r9j6s


https://wolfram.com/xid/0elts4n1fh6o5lv-mwobp

Estimate parameters based on default moments:

https://wolfram.com/xid/0elts4n1fh6o5lv-i67wap

https://wolfram.com/xid/0elts4n1fh6o5lv-g9rzs0

Estimate parameters from the first and fourth moments:

https://wolfram.com/xid/0elts4n1fh6o5lv-esvrcm

Obtain the maximum likelihood estimates using the default method:

https://wolfram.com/xid/0elts4n1fh6o5lv-o6nc6

https://wolfram.com/xid/0elts4n1fh6o5lv-lvp1uu

Use FindMaximum to obtain the estimates:

https://wolfram.com/xid/0elts4n1fh6o5lv-e9e0he

Use EvaluationMonitor to extract the points sampled:

https://wolfram.com/xid/0elts4n1fh6o5lv-j6vhwp
Visualize the sequences of sampled and
values:

https://wolfram.com/xid/0elts4n1fh6o5lv-bo0p03

WorkingPrecision (1)
Applications (17)Sample problems that can be solved with this function
Use One Parameter Estimator to Get Starting Values for Another (1)

https://wolfram.com/xid/0elts4n1fh6o5lv-f80lyr
Get the method of moments estimate:

https://wolfram.com/xid/0elts4n1fh6o5lv-ht4hfs

Use the method of moments estimate as the starting value for ml estimation:

https://wolfram.com/xid/0elts4n1fh6o5lv-b04qb7

Obtain ml estimates for a gamma distribution:

https://wolfram.com/xid/0elts4n1fh6o5lv-meun6x

Use those as starting values for the method of moments:

https://wolfram.com/xid/0elts4n1fh6o5lv-d0jp9x

Obtain Starting Values for Another Estimation (1)
Estimate Laplace parameters for data from an ExponentialPowerDistribution:

https://wolfram.com/xid/0elts4n1fh6o5lv-hlweg

https://wolfram.com/xid/0elts4n1fh6o5lv-c8mi27

Use the Laplace estimate as a starting point for estimating exponential power parameters:

https://wolfram.com/xid/0elts4n1fh6o5lv-bvt8i2

Compare the data with the Laplace and exponential power estimates:

https://wolfram.com/xid/0elts4n1fh6o5lv-br232x

Parameter Estimation of Similarly Shaped Distributions (1)
Model lognormal distributed data with a gamma distribution:

https://wolfram.com/xid/0elts4n1fh6o5lv-fzzzxm

https://wolfram.com/xid/0elts4n1fh6o5lv-fg63nf

https://wolfram.com/xid/0elts4n1fh6o5lv-jsaju

Compare the distributions of the simulation and estimated distributions:

https://wolfram.com/xid/0elts4n1fh6o5lv-qormqv

Accident Claims (1)
The number of accident claims per policy per year from an insurance company:

https://wolfram.com/xid/0elts4n1fh6o5lv-z1vmig
Estimate the parameter for a logarithmic series distribution for policy claims shifted by 1:

https://wolfram.com/xid/0elts4n1fh6o5lv-rcq9w9

See that the estimate gives a maximal result:

https://wolfram.com/xid/0elts4n1fh6o5lv-cw79i2

Word Lengths in Different Languages (1)
Get word length data for several languages:

https://wolfram.com/xid/0elts4n1fh6o5lv-6iya5

https://wolfram.com/xid/0elts4n1fh6o5lv-eylvaw
Model the word lengths for each language as binomially distributed with :

https://wolfram.com/xid/0elts4n1fh6o5lv-dwvuty

Compare the actual and estimated distributions:

https://wolfram.com/xid/0elts4n1fh6o5lv-nyixdm

Bootstrap the distribution of p values based on these 9 results:

https://wolfram.com/xid/0elts4n1fh6o5lv-cmv265

https://wolfram.com/xid/0elts4n1fh6o5lv-eupw67

Estimate the expected value of p and a standard deviation for the estimate:

https://wolfram.com/xid/0elts4n1fh6o5lv-h1zot0

Text Frequency (1)
The word count in a text follows a Zipf distribution:

https://wolfram.com/xid/0elts4n1fh6o5lv-ir5i5j

https://wolfram.com/xid/0elts4n1fh6o5lv-z0k8fd
Fit a ZipfDistribution to the word frequency data:

https://wolfram.com/xid/0elts4n1fh6o5lv-798qy3

Fit a truncated ZipfDistribution to counts at most 50 using rhohat as a starting value:

https://wolfram.com/xid/0elts4n1fh6o5lv-hxqqsw

Visualize the CDFs up to the truncation value:

https://wolfram.com/xid/0elts4n1fh6o5lv-enj6pg

Estimate the proportion of the original data not included in the truncated model:

https://wolfram.com/xid/0elts4n1fh6o5lv-cxgs8z


https://wolfram.com/xid/0elts4n1fh6o5lv-lndm5

Earthquake Magnitudes (1)
Find estimates for a multimodal MixtureDistribution model:

https://wolfram.com/xid/0elts4n1fh6o5lv-edpm4u


https://wolfram.com/xid/0elts4n1fh6o5lv-f4t8ts
The magnitudes of earthquakes in the United States in the selected years have two modes:

https://wolfram.com/xid/0elts4n1fh6o5lv-nxet3k

Fit distribution from possible mixtures of one NormalDistribution with another:

https://wolfram.com/xid/0elts4n1fh6o5lv-i54v31

https://wolfram.com/xid/0elts4n1fh6o5lv-pk5e3b

Extract the means of the components:

https://wolfram.com/xid/0elts4n1fh6o5lv-by7qf7

The components' means are far enough apart that they are still the modes:

https://wolfram.com/xid/0elts4n1fh6o5lv-iwn8pm

Wind Speed Analysis (1)
Model monthly maximum wind speeds in Boston:

https://wolfram.com/xid/0elts4n1fh6o5lv-lwm8or
Fit the data to a RayleighDistribution:

https://wolfram.com/xid/0elts4n1fh6o5lv-f4qsgb


https://wolfram.com/xid/0elts4n1fh6o5lv-u25hr1

Compare the empirical and fitted quantiles to see where the models deviate from the data:

https://wolfram.com/xid/0elts4n1fh6o5lv-6x1hxc

Distribution of Incomes (1)
Model incomes at a large state university:

https://wolfram.com/xid/0elts4n1fh6o5lv-7j991j


https://wolfram.com/xid/0elts4n1fh6o5lv-5shjys

https://wolfram.com/xid/0elts4n1fh6o5lv-o5p1x5
Assume the salaries are Dagum distributed:

https://wolfram.com/xid/0elts4n1fh6o5lv-5b4k5i

Assume they follow a more general Pareto distribution:

https://wolfram.com/xid/0elts4n1fh6o5lv-rpk1fh

Compare the subtle differences in the estimated distributions:

https://wolfram.com/xid/0elts4n1fh6o5lv-8iui9

Market Change in Stock Values (1)
Use a beta distribution to model the proportion of Dow Jones Industrial stocks that increase in value on a given day:

https://wolfram.com/xid/0elts4n1fh6o5lv-hhnw8h

Find daily change for Dow Jones Industrial stocks:

https://wolfram.com/xid/0elts4n1fh6o5lv-c0r0j1
Number of days for each financial entity:

https://wolfram.com/xid/0elts4n1fh6o5lv-e15an6

Extract values from time series for each entity and normalize numeric quantities:

https://wolfram.com/xid/0elts4n1fh6o5lv-nob1rw
Check if each entity has the same length of data:

https://wolfram.com/xid/0elts4n1fh6o5lv-ldtuwa


https://wolfram.com/xid/0elts4n1fh6o5lv-oibkmk

Calculate the daily ratio of companies with an increase in value:

https://wolfram.com/xid/0elts4n1fh6o5lv-b1xazx
Find parameter estimates, excluding days with zero or all companies having an increase in value:

https://wolfram.com/xid/0elts4n1fh6o5lv-18xqlp

Visualize the likelihood contours and mark the optimal point:

https://wolfram.com/xid/0elts4n1fh6o5lv-gxw5rz

Automobile Fuel Efficiency (1)
The average city and highway mileage for midsize cars follows a binormal distribution:

https://wolfram.com/xid/0elts4n1fh6o5lv-2zftgd
Assume city and highway miles per gallon are normally distributed and correlated:

https://wolfram.com/xid/0elts4n1fh6o5lv-wivilb

Extract the estimated average city and highway mileages:

https://wolfram.com/xid/0elts4n1fh6o5lv-ejv7ci

Extract the estimated correlation between city and highway mileages:

https://wolfram.com/xid/0elts4n1fh6o5lv-219ou

Visualize the joint density on a logarithmic scale with the mean mileage marked with a blue point:

https://wolfram.com/xid/0elts4n1fh6o5lv-mvwyjp

Earthquake Waiting Times (1)
The data contains waiting times in days between serious (magnitude at least 7.5 or over 1000 fatalities) earthquakes worldwide, recorded from 12/16/1902 to 3/4/1977:

https://wolfram.com/xid/0elts4n1fh6o5lv-nreqgi
Model waiting times by an ExponentialDistribution:

https://wolfram.com/xid/0elts4n1fh6o5lv-junv9u

Estimate the average and median number of days between major earthquakes:

https://wolfram.com/xid/0elts4n1fh6o5lv-xmtz1i

Earthquake Frequency (1)
The number of earthquakes per year can be modeled by SinghMaddalaDistribution:

https://wolfram.com/xid/0elts4n1fh6o5lv-ksja6c


https://wolfram.com/xid/0elts4n1fh6o5lv-ehjcp4

Fit the distribution to the data:

https://wolfram.com/xid/0elts4n1fh6o5lv-bk6atw

Compute the maximized log‐likelihood:

https://wolfram.com/xid/0elts4n1fh6o5lv-cfviox

Visualize the log‐likelihood profiles near the optimal parameter values:

https://wolfram.com/xid/0elts4n1fh6o5lv-c4s2w3

Time between Geyser Eruptions (1)
Mixtures can be used to model multimodal data:

https://wolfram.com/xid/0elts4n1fh6o5lv-wffeo8


https://wolfram.com/xid/0elts4n1fh6o5lv-jtc6yw
A histogram of waiting times for eruptions of the Old Faithful geyser exhibits two modes:

https://wolfram.com/xid/0elts4n1fh6o5lv-56feeh

Fit a mixture of gamma and normal distributions to the data:

https://wolfram.com/xid/0elts4n1fh6o5lv-08arub

https://wolfram.com/xid/0elts4n1fh6o5lv-h1dwv5

Compare the histogram to the PDF of the estimated distribution:

https://wolfram.com/xid/0elts4n1fh6o5lv-8eqwhv

Stock Price Distribution (1)
Lognormal distribution can be used to model stock prices:

https://wolfram.com/xid/0elts4n1fh6o5lv-1vd54a
Fit the distribution to the data:

https://wolfram.com/xid/0elts4n1fh6o5lv-t4z02a

Visualize the profile likelihoods, fixing one parameter at the fitted value:

https://wolfram.com/xid/0elts4n1fh6o5lv-ge95q4

Water Flow Rates (1)
Consider the annual minimum daily flows given in cubic meters per second for the Mahanadi river:

https://wolfram.com/xid/0elts4n1fh6o5lv-9jny36
Model the annual minimum mean daily flows as a MinStableDistribution:

https://wolfram.com/xid/0elts4n1fh6o5lv-9l18qo

Simulate annual minimum mean daily flows for the next 30 years:

https://wolfram.com/xid/0elts4n1fh6o5lv-o3eth1

Population Sizes (1)
Use a Pareto distribution to model Australian city population sizes:

https://wolfram.com/xid/0elts4n1fh6o5lv-mv1s6f

https://wolfram.com/xid/0elts4n1fh6o5lv-45n2wx

https://wolfram.com/xid/0elts4n1fh6o5lv-qmih4s

Get the probability that a city has a population at least 10000 under a Pareto distribution:

https://wolfram.com/xid/0elts4n1fh6o5lv-f2ken6

Compute the probability given the parameter estimates:

https://wolfram.com/xid/0elts4n1fh6o5lv-djigbb

Compute the probability based on the original data:

https://wolfram.com/xid/0elts4n1fh6o5lv-ddnga0

Properties & Relations (8)Properties of the function, and connections to other functions
FindDistributionParameters gives estimates as replacement rules:

https://wolfram.com/xid/0elts4n1fh6o5lv-e3jtwd

EstimatedDistribution gives a distribution with parameter estimates inserted:

https://wolfram.com/xid/0elts4n1fh6o5lv-e4ishy

FindProcessParameters returns a list of parameter estimates for a random process:

https://wolfram.com/xid/0elts4n1fh6o5lv-fa9tm0

https://wolfram.com/xid/0elts4n1fh6o5lv-wtkc3

FindDistributionParameters returns a list of parameter estimates for a distribution:

https://wolfram.com/xid/0elts4n1fh6o5lv-1dde8

https://wolfram.com/xid/0elts4n1fh6o5lv-yq9vm

Estimate distribution parameters by maximum likelihood:

https://wolfram.com/xid/0elts4n1fh6o5lv-ob999

https://wolfram.com/xid/0elts4n1fh6o5lv-lczwnz

Use DistributionFitTest to test quality of the fit:

https://wolfram.com/xid/0elts4n1fh6o5lv-ccvtx8

Extract the fitted distribution parameter:

https://wolfram.com/xid/0elts4n1fh6o5lv-h761n

Obtain a table of relevant test statistics and p‐values:

https://wolfram.com/xid/0elts4n1fh6o5lv-ihsqf

Estimate parameters in a parametric distribution:

https://wolfram.com/xid/0elts4n1fh6o5lv-ckutmu

https://wolfram.com/xid/0elts4n1fh6o5lv-isciqb

Get a nonparametric kernel density estimate using SmoothKernelDistribution:

https://wolfram.com/xid/0elts4n1fh6o5lv-7599f

Compare the PDFs for the nonparametric and parametric distributions:

https://wolfram.com/xid/0elts4n1fh6o5lv-do791o

Visualize the nonparametric density using SmoothHistogram:

https://wolfram.com/xid/0elts4n1fh6o5lv-dx56th

Get a maximum likelihood estimate of parameters:

https://wolfram.com/xid/0elts4n1fh6o5lv-b44vfh

https://wolfram.com/xid/0elts4n1fh6o5lv-gybs4p

Compute the likelihood using Likelihood:

https://wolfram.com/xid/0elts4n1fh6o5lv-d6khwy

Compute the log‐likelihood using LogLikelihood:

https://wolfram.com/xid/0elts4n1fh6o5lv-ee9gr

Estimate parameters by matching raw moments:

https://wolfram.com/xid/0elts4n1fh6o5lv-j6kgfw

https://wolfram.com/xid/0elts4n1fh6o5lv-c76r62

Compute raw moments from the data using Moment:

https://wolfram.com/xid/0elts4n1fh6o5lv-bfhulb

Compute the same moments from the beta distribution for the estimated parameters:

https://wolfram.com/xid/0elts4n1fh6o5lv-b4c4k2

Estimate parameters for a Weibull distribution:

https://wolfram.com/xid/0elts4n1fh6o5lv-k52now

https://wolfram.com/xid/0elts4n1fh6o5lv-b1yhwi

Use QuantilePlot to visualize the empirical quantiles versus the theoretical quantiles:

https://wolfram.com/xid/0elts4n1fh6o5lv-jlzx1q

Obtain the same visualization when the estimation is done within QuantilePlot:

https://wolfram.com/xid/0elts4n1fh6o5lv-e6tfs7

FindDistributionParameters ignores time stamps in TimeSeries and EventSeries:

https://wolfram.com/xid/0elts4n1fh6o5lv-5cnypl

https://wolfram.com/xid/0elts4n1fh6o5lv-to38xt


https://wolfram.com/xid/0elts4n1fh6o5lv-d86q20

For TemporalData, all the path structure is ignored:

https://wolfram.com/xid/0elts4n1fh6o5lv-ldkb7z

https://wolfram.com/xid/0elts4n1fh6o5lv-h4n01u


https://wolfram.com/xid/0elts4n1fh6o5lv-o8g3s9

Possible Issues (3)Common pitfalls and unexpected behavior
Solutions of method-of-moment equations can give parameters that are not valid:

https://wolfram.com/xid/0elts4n1fh6o5lv-cez6ga


https://wolfram.com/xid/0elts4n1fh6o5lv-6tf1w

For a continuous distribution:

https://wolfram.com/xid/0elts4n1fh6o5lv-vi8it0

https://wolfram.com/xid/0elts4n1fh6o5lv-j8q9s


https://wolfram.com/xid/0elts4n1fh6o5lv-4ii0py


Good starting values may be needed to obtain a good solution:

https://wolfram.com/xid/0elts4n1fh6o5lv-d6zcjm

https://wolfram.com/xid/0elts4n1fh6o5lv-rshcwr



https://wolfram.com/xid/0elts4n1fh6o5lv-ehtcct

Good starting values may result in quicker results:

https://wolfram.com/xid/0elts4n1fh6o5lv-haflfw

https://wolfram.com/xid/0elts4n1fh6o5lv-exmjzn


https://wolfram.com/xid/0elts4n1fh6o5lv-81orm

Wolfram Research (2010), FindDistributionParameters, Wolfram Language function, https://reference.wolfram.com/language/ref/FindDistributionParameters.html.
Text
Wolfram Research (2010), FindDistributionParameters, Wolfram Language function, https://reference.wolfram.com/language/ref/FindDistributionParameters.html.
Wolfram Research (2010), FindDistributionParameters, Wolfram Language function, https://reference.wolfram.com/language/ref/FindDistributionParameters.html.
CMS
Wolfram Language. 2010. "FindDistributionParameters." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/FindDistributionParameters.html.
Wolfram Language. 2010. "FindDistributionParameters." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/FindDistributionParameters.html.
APA
Wolfram Language. (2010). FindDistributionParameters. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FindDistributionParameters.html
Wolfram Language. (2010). FindDistributionParameters. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FindDistributionParameters.html
BibTeX
@misc{reference.wolfram_2025_finddistributionparameters, author="Wolfram Research", title="{FindDistributionParameters}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/FindDistributionParameters.html}", note=[Accessed: 29-March-2025
]}
BibLaTeX
@online{reference.wolfram_2025_finddistributionparameters, organization={Wolfram Research}, title={FindDistributionParameters}, year={2010}, url={https://reference.wolfram.com/language/ref/FindDistributionParameters.html}, note=[Accessed: 29-March-2025
]}