GaborMatrix
✖
GaborMatrix
gives a matrix that corresponds to the real part of a Gabor kernel of radius r and wave vector k.
gives an array corresponding to a Gabor kernel with radius ri in the i index direction.
Details and Options

- GaborMatrix[{r,σ},k,ϕ] gives values proportional to
at index position
from the center.
- GaborMatrix[r,k] is equivalent to GaborMatrix[{r,r/2},k,0].
- By default, the matrix is rescaled so that the elements of Abs[GaborMatrix[r,k,0]+I GaborMatrix[r,k,π/2]] sum to 1.
- For integer r, GaborMatrix[r,…] yields a
×
matrix.
- For noninteger r, the value of r is effectively rounded to an integer.
- Either of the r or σ can be lists, specifying different values for different directions.
- With GaborMatrix[{r,{σ1,σ2,…}},k], σ1 is the standard deviation along k, and σ2, … are standard deviations perpendicular to k. The i
direction is defined by the i
column of RotationMatrix[{{1,0,…},k}].
- For data arrays with n dimensions and a wave vector {k1,…,kn}, ki is pointing in the same direction as the i
dimension of data. For images, the filter is effectively applied to ImageData[image].
- The following options can be specified:
-
Standardized True whether to rescale the matrix to account for truncation WorkingPrecision Automatic the precision with which to compute matrix elements
Examples
open allclose allBasic Examples (3)Summary of the most common use cases

https://wolfram.com/xid/01y98uar4u6-gezb54

MatrixPlot of a Gabor matrix:

https://wolfram.com/xid/01y98uar4u6-kilgdo


https://wolfram.com/xid/01y98uar4u6-v4a1ut

Scope (9)Survey of the scope of standard use cases
Gabor matrix using a 45° wave vector. Notice that the wave vector is perpendicular to the wave front:

https://wolfram.com/xid/01y98uar4u6-x98y0s

Specify an isotropic standard deviation :

https://wolfram.com/xid/01y98uar4u6-x8r3wq

Specify an anisotropic standard deviation and
:

https://wolfram.com/xid/01y98uar4u6-ocb7ia

Decrease the wave number to get a Gabor matrix with a larger wavelength:

https://wolfram.com/xid/01y98uar4u6-1jaqkh

Create a rectangular Gabor matrix:

https://wolfram.com/xid/01y98uar4u6-7y8t0r

An anisotropic Gabor matrix with a large wavelength and a node at the center:

https://wolfram.com/xid/01y98uar4u6-bqqhqm

Visualize a 1D Gabor vector with different wave number and phase shift:

https://wolfram.com/xid/01y98uar4u6-b846jd

Visualize the magnitude spectrum of a 1D Gabor vector for different values of the wavenumber:

https://wolfram.com/xid/01y98uar4u6-jpzq5


https://wolfram.com/xid/01y98uar4u6-nl9i65

Options (2)Common values & functionality for each option
Standardized (1)
The default setting is True:

https://wolfram.com/xid/01y98uar4u6-ggy8i

Use StandardizedFalse:

https://wolfram.com/xid/01y98uar4u6-f9v0fb

WorkingPrecision (1)
MachinePrecision is used by default:

https://wolfram.com/xid/01y98uar4u6-b9bieq

Perform exact computation instead:

https://wolfram.com/xid/01y98uar4u6-b8ufl0

Properties & Relations (3)Properties of the function, and connections to other functions
GaborFilter is equivalent to a convolution with a GaborMatrix:

https://wolfram.com/xid/01y98uar4u6-es6t43


https://wolfram.com/xid/01y98uar4u6-ri8l57


https://wolfram.com/xid/01y98uar4u6-bfgtky

Visualize the 1D Gabor kernel on its equivalent Gabor wavelet function:

https://wolfram.com/xid/01y98uar4u6-ccnr7p

With a zero-length wave vector, Gabor matrix is equivalent to GaussianMatrix:

https://wolfram.com/xid/01y98uar4u6-gppcpj

Wolfram Research (2012), GaborMatrix, Wolfram Language function, https://reference.wolfram.com/language/ref/GaborMatrix.html (updated 2015).
Text
Wolfram Research (2012), GaborMatrix, Wolfram Language function, https://reference.wolfram.com/language/ref/GaborMatrix.html (updated 2015).
Wolfram Research (2012), GaborMatrix, Wolfram Language function, https://reference.wolfram.com/language/ref/GaborMatrix.html (updated 2015).
CMS
Wolfram Language. 2012. "GaborMatrix." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2015. https://reference.wolfram.com/language/ref/GaborMatrix.html.
Wolfram Language. 2012. "GaborMatrix." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2015. https://reference.wolfram.com/language/ref/GaborMatrix.html.
APA
Wolfram Language. (2012). GaborMatrix. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/GaborMatrix.html
Wolfram Language. (2012). GaborMatrix. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/GaborMatrix.html
BibTeX
@misc{reference.wolfram_2025_gabormatrix, author="Wolfram Research", title="{GaborMatrix}", year="2015", howpublished="\url{https://reference.wolfram.com/language/ref/GaborMatrix.html}", note=[Accessed: 08-June-2025
]}
BibLaTeX
@online{reference.wolfram_2025_gabormatrix, organization={Wolfram Research}, title={GaborMatrix}, year={2015}, url={https://reference.wolfram.com/language/ref/GaborMatrix.html}, note=[Accessed: 08-June-2025
]}