GeodesyData
✖
GeodesyData
gives the value of the specified property for a named geodetic datum or reference ellipsoid.
gives the value of the property for the ellipsoid with semimajor axis a and semiminor axis b.
gives the value of the property at the specified coordinates.
Details




- GeodesyData[] gives a list of all available named geodetic datums and reference ellipsoids.
- Geodetic datums are specified by standard names such as "NAD27" and "ITRF00".
- Reference ellipsoids are given standard names such as "Clarke1866" and "GRS80".
- GeodesyData["Datum"] gives the names of all available named geodetic datums; GeodesyData["ReferenceEllipsoid"] gives those of all available named reference ellipsoids.
- GeodesyData["datum","ReferenceEllipsoid"] gives the name of the reference ellipsoid associated with the specified datum.
- Basic geometrical properties include:
-
"EllipsoidParameters" ellipsoid parameters "InverseFlattening" inverse flattening of the ellipsoid "SemimajorAxis" length of the semimajor axis (equatorial radius) "SemiminorAxis" length of the semiminor axis (or polar radius) - Additional geometrical properties include:
-
"AngularEccentricity" angular eccentricity of the ellipsoid "AuthalicRadius" radius of a sphere of the same surface "Eccentricity" first eccentricity of the ellipsoid "Flattening" flattening of the ellipsoid "LinearEccentricity" linear eccentricity of the ellipsoid "MeanMassRadius" mean mass radius "MeanRadius" geometric mean radius "MeridianQuadrant" length of the meridian from the equator to the pole "SecondEccentricity" second eccentricity of the ellipsoid "SecondFlattening" second flattening of the ellipsoid "Semiaxes" semimajor and semiminor axes of the ellipsoid "ThirdEccentricity" third eccentricity of the ellipsoid "ThirdFlattening" third flattening of the ellipsoid "VolumetricRadius" radius of a sphere of equal volume - Coordinate-dependent properties include:
-
{"ConformalRadius",lat} conformal radius at latitude lat {"MeridionalArc",lat1,lat2} length of the meridian between latitudes lat1 and lat2 {"MeridionalCurvatureRadius",lat} radius of curvature in the meridian at latitude lat {"PrimeVerticalCurvatureRadius",lat} radius of curvature in the prime vertical at latitude lat {"NormalSectionCurvatureRadius",lat,a} radius of curvature at latitude lat in the direction azimuth a - Properties converting from geodetic latitude to alternative forms of latitude include:
-
{"AuthalicLatitude",lat} latitude of an equivalent point on the authalic sphere {"ConformalLatitude",lat} conformal projection of a geodesic latitude lat {"GeocentricLatitude",lat} angle between the equatorial plane and a line from the center {"IsometricLatitude",lat} isometric latitude referred to lat {"RectifyingLatitude",lat} projection preserving distance between meridians {"ReducedLatitude",lat} parametric latitude of an equivalent point on a sphere - Properties converting from alternative forms of latitude to geodetic latitude include:
-
{"FromAuthalicLatitude",lat} latitude of an equivalent point on the authalic sphere {"FromConformalLatitude",lat} conformal projection of a geodesic latitude lat {"FromGeocentricLatitude",lat} angle between the equatorial plane and a line from the center {"FromIsometricLatitude",lat} isometric latitude referred to lat {"FromRectifyingLatitude",lat} projection preserving distance between meridians {"FromReducedLatitude",lat} parametric latitude of an equivalent point on a sphere - Other properties include:
-
"AlternateNames" alternate English names "StandardName" Wolfram Language standard name "Name" English name "Properties" available properties - Reference ellipsoids can be specified by semiaxes {a,b} or by semimajor axis and inverse flattening {a,{invf}}.
- Input latitudes can be given as numbers in degrees or as Quantity angles. Semiaxis lengths in input can be given as numbers in meters or as Quantity lengths.
- Angular results are given as Quantity angles in degrees. Distance results are given as Quantity lengths in meters.
- GeodesyData gives symbolic results if the parameters of a reference ellipsoid are given symbolically.
- GeodesyData[{datum1,datum2}] gives rules for the parameters used to transform datum1 to datum2.
- GeodesyData[{datum1,datum2},"param"] gives the specified parameter for transforming from datum1 to datum2.
- Transformation parameters for datums include:
-
"ParameterDefinitionYear" decimal year when parameter values were defined "Rotation" rotation angles in milliarcseconds "RotationDerivative" rate of change of rotation in milliarcseconds per year "Scale" transformation scale factor "ScaleDerivative" annual change of transformation scale factor "Translation" translation vector given in meters "TranslationDerivative" rate of change of translation vector in meters per year
Examples
open allclose allBasic Examples (4)Summary of the most common use cases

https://wolfram.com/xid/0fq7vd0ouu8ma-qtr8w9

Semimajor axis and inverse flattening of GRS80:

https://wolfram.com/xid/0fq7vd0ouu8ma-oshwng

Eccentricity of the GRS80 reference ellipsoid:

https://wolfram.com/xid/0fq7vd0ouu8ma-lfm2oz

The parameters required to transform from ITRF00 to NAD83CORS96:

https://wolfram.com/xid/0fq7vd0ouu8ma-ifgwjw

Scope (17)Survey of the scope of standard use cases
Names and Classes (3)
List of all available named datums and reference ellipsoids:

https://wolfram.com/xid/0fq7vd0ouu8ma-3ufd8z


https://wolfram.com/xid/0fq7vd0ouu8ma-rg5zjb

Standard name of a datum in the Wolfram Language:

https://wolfram.com/xid/0fq7vd0ouu8ma-xgk74v


https://wolfram.com/xid/0fq7vd0ouu8ma-03p1lj


https://wolfram.com/xid/0fq7vd0ouu8ma-lp88lh


https://wolfram.com/xid/0fq7vd0ouu8ma-0xefux

List of available named datums:

https://wolfram.com/xid/0fq7vd0ouu8ma-8r0pvr

List of available reference ellipsoids:

https://wolfram.com/xid/0fq7vd0ouu8ma-ord6bt

List of direct datum transformations with available data:

https://wolfram.com/xid/0fq7vd0ouu8ma-up9wb4

Graph of those direct transformations:

https://wolfram.com/xid/0fq7vd0ouu8ma-z52xtw

Properties and Values for Reference Ellipsoids (8)

https://wolfram.com/xid/0fq7vd0ouu8ma-3v5h4v

An ellipsoid of revolution is characterized by the semiaxes lengths {a,b} of a vertical section:

https://wolfram.com/xid/0fq7vd0ouu8ma-vc335a


https://wolfram.com/xid/0fq7vd0ouu8ma-y4xh7e

Or by the semimajor axis a and the inverse flattening :

https://wolfram.com/xid/0fq7vd0ouu8ma-6y6y8i


https://wolfram.com/xid/0fq7vd0ouu8ma-g0jsr9

The shape of an ellipse of semiaxes {a,b} can be described by the eccentricity :

https://wolfram.com/xid/0fq7vd0ouu8ma-n5klo0


https://wolfram.com/xid/0fq7vd0ouu8ma-ijlmuz


https://wolfram.com/xid/0fq7vd0ouu8ma-etgc0a


https://wolfram.com/xid/0fq7vd0ouu8ma-rmz4c3

Specify an arbitrary oblate ellipsoid by giving the semiaxis lengths:

https://wolfram.com/xid/0fq7vd0ouu8ma-lldma9


https://wolfram.com/xid/0fq7vd0ouu8ma-iz0ega


https://wolfram.com/xid/0fq7vd0ouu8ma-0svb7q


https://wolfram.com/xid/0fq7vd0ouu8ma-s4nn83

Specify the semimajor axis and the inverse flattening:

https://wolfram.com/xid/0fq7vd0ouu8ma-26semm


https://wolfram.com/xid/0fq7vd0ouu8ma-kqb72x


https://wolfram.com/xid/0fq7vd0ouu8ma-lecdvl


https://wolfram.com/xid/0fq7vd0ouu8ma-2cwodo

The Earth is nearly spherical:

https://wolfram.com/xid/0fq7vd0ouu8ma-owgfnh


https://wolfram.com/xid/0fq7vd0ouu8ma-d0ygp6

Therefore, the various concepts of radius have similar values and are also similar to the semiaxes lengths:

https://wolfram.com/xid/0fq7vd0ouu8ma-gopqqc


https://wolfram.com/xid/0fq7vd0ouu8ma-rsuu4q


https://wolfram.com/xid/0fq7vd0ouu8ma-o0q2ss


https://wolfram.com/xid/0fq7vd0ouu8ma-3mbll6


https://wolfram.com/xid/0fq7vd0ouu8ma-n5rvgz


https://wolfram.com/xid/0fq7vd0ouu8ma-skge1p


https://wolfram.com/xid/0fq7vd0ouu8ma-6eatzt


https://wolfram.com/xid/0fq7vd0ouu8ma-lixw8e

On an ellipsoid, the curvature radius of a meridian varies with latitude, specified as a number in degrees:

https://wolfram.com/xid/0fq7vd0ouu8ma-dbv99z

Latitude can also be given as a Quantity angle:

https://wolfram.com/xid/0fq7vd0ouu8ma-roswek

Curvature radius of the normal section perpendicular to the meridian:

https://wolfram.com/xid/0fq7vd0ouu8ma-ugftc

Curvature radius of a normal section of a given azimuth, measured clockwise from north:

https://wolfram.com/xid/0fq7vd0ouu8ma-cj6v1w

Plot all possible values of the curvature radius of normal sections of the ellipsoid:

https://wolfram.com/xid/0fq7vd0ouu8ma-qp8762

Convert from geodetic latitude to other types of latitude, and back to geodetic latitude:

https://wolfram.com/xid/0fq7vd0ouu8ma-q8tthe


https://wolfram.com/xid/0fq7vd0ouu8ma-9qt5y2


https://wolfram.com/xid/0fq7vd0ouu8ma-uk1k3r


https://wolfram.com/xid/0fq7vd0ouu8ma-0dwxl0


https://wolfram.com/xid/0fq7vd0ouu8ma-tgv4ty


https://wolfram.com/xid/0fq7vd0ouu8ma-by5n4m


https://wolfram.com/xid/0fq7vd0ouu8ma-kky02q


https://wolfram.com/xid/0fq7vd0ouu8ma-cq0j3w


https://wolfram.com/xid/0fq7vd0ouu8ma-f6hgbj


https://wolfram.com/xid/0fq7vd0ouu8ma-cely56


https://wolfram.com/xid/0fq7vd0ouu8ma-tdt9t


https://wolfram.com/xid/0fq7vd0ouu8ma-uhd8mc

Compute lengths along meridians. This is a quadrant (equator to pole):

https://wolfram.com/xid/0fq7vd0ouu8ma-7o51ix


https://wolfram.com/xid/0fq7vd0ouu8ma-dtpb7u

Distance is not proportional to difference in geodetic latitude:

https://wolfram.com/xid/0fq7vd0ouu8ma-i91kd


https://wolfram.com/xid/0fq7vd0ouu8ma-yyhatx

Properties and Values for Datums and Datum Transformations (6)
Each datum has an associated reference ellipsoid:

https://wolfram.com/xid/0fq7vd0ouu8ma-i1ayjn

Different datums may have the same reference ellipsoid but differ in position or orientation:

https://wolfram.com/xid/0fq7vd0ouu8ma-q2q42a

Most properties of a datum are just properties of its ellipsoid:

https://wolfram.com/xid/0fq7vd0ouu8ma-0734cu


https://wolfram.com/xid/0fq7vd0ouu8ma-qrp7od

The WGS 84 datum has been updated but the ellipsoid parameters have been kept:

https://wolfram.com/xid/0fq7vd0ouu8ma-si27nl

A transformation between datums is represented as a pair:

https://wolfram.com/xid/0fq7vd0ouu8ma-07cinj

The relation between two datums is encoded in the seven parameters of a Helmert transformation:

https://wolfram.com/xid/0fq7vd0ouu8ma-0406e1


https://wolfram.com/xid/0fq7vd0ouu8ma-2ost4h


https://wolfram.com/xid/0fq7vd0ouu8ma-jplq7g

The relation between some datums changes in time. These are the parameters at definition time:

https://wolfram.com/xid/0fq7vd0ouu8ma-2nzwel


https://wolfram.com/xid/0fq7vd0ouu8ma-rhz6pr


https://wolfram.com/xid/0fq7vd0ouu8ma-zro6vz


https://wolfram.com/xid/0fq7vd0ouu8ma-8up1r6

These are their variations per year:

https://wolfram.com/xid/0fq7vd0ouu8ma-b8u1ff


https://wolfram.com/xid/0fq7vd0ouu8ma-2je9se


https://wolfram.com/xid/0fq7vd0ouu8ma-tnnxlk

Applications (1)Sample problems that can be solved with this function
Perform a change of datum using GeoPositionXYZ. Take the {0,0} point in the "NAD27" datum:

https://wolfram.com/xid/0fq7vd0ouu8ma-8zx5cp

Transform it to the "WGS72" datum:

https://wolfram.com/xid/0fq7vd0ouu8ma-kq00os

In the new datum, the same point has different latitude and longitude values and nonzero height:

https://wolfram.com/xid/0fq7vd0ouu8ma-46f9lp

The origins of the datums are related by a translation, in meters:

https://wolfram.com/xid/0fq7vd0ouu8ma-qb1aw1

There is also a change of length, in units of 10-8:

https://wolfram.com/xid/0fq7vd0ouu8ma-so5fbg

And a small rotation, encoded as a vector in milliarcseconds:

https://wolfram.com/xid/0fq7vd0ouu8ma-679vpz


https://wolfram.com/xid/0fq7vd0ouu8ma-hp2hw6

This is the seven-parameter Helmert transformation of the original coordinates:

https://wolfram.com/xid/0fq7vd0ouu8ma-jqrsk9

Properties & Relations (2)Properties of the function, and connections to other functions
Distance computations along meridians can also be performed with GeoDistance:

https://wolfram.com/xid/0fq7vd0ouu8ma-zqgh1d


https://wolfram.com/xid/0fq7vd0ouu8ma-lry3y0

The result is independent of longitude:

https://wolfram.com/xid/0fq7vd0ouu8ma-8uszfb

Meridians are normal sections of zero azimuth:

https://wolfram.com/xid/0fq7vd0ouu8ma-rruw05


https://wolfram.com/xid/0fq7vd0ouu8ma-spkmxn

The prime vertical curvature is that of the meridian-perpendicular normal section:

https://wolfram.com/xid/0fq7vd0ouu8ma-319i1j


https://wolfram.com/xid/0fq7vd0ouu8ma-qo8782

Wolfram Research (2008), GeodesyData, Wolfram Language function, https://reference.wolfram.com/language/ref/GeodesyData.html (updated 2020).
Text
Wolfram Research (2008), GeodesyData, Wolfram Language function, https://reference.wolfram.com/language/ref/GeodesyData.html (updated 2020).
Wolfram Research (2008), GeodesyData, Wolfram Language function, https://reference.wolfram.com/language/ref/GeodesyData.html (updated 2020).
CMS
Wolfram Language. 2008. "GeodesyData." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2020. https://reference.wolfram.com/language/ref/GeodesyData.html.
Wolfram Language. 2008. "GeodesyData." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2020. https://reference.wolfram.com/language/ref/GeodesyData.html.
APA
Wolfram Language. (2008). GeodesyData. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/GeodesyData.html
Wolfram Language. (2008). GeodesyData. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/GeodesyData.html
BibTeX
@misc{reference.wolfram_2025_geodesydata, author="Wolfram Research", title="{GeodesyData}", year="2020", howpublished="\url{https://reference.wolfram.com/language/ref/GeodesyData.html}", note=[Accessed: 07-May-2025
]}
BibLaTeX
@online{reference.wolfram_2025_geodesydata, organization={Wolfram Research}, title={GeodesyData}, year={2020}, url={https://reference.wolfram.com/language/ref/GeodesyData.html}, note=[Accessed: 07-May-2025
]}