WOLFRAM

decomposes the group element g as a product of generators of group.

Details and Options

  • The group element g must belong to the given group.
  • GroupElementToWord[group,g] gives the word of g in the form of a list of nonzero integers {m1,,mk} representing generators in the list returned by GroupGenerators[group]. A positive integer in the word represents the ^(th) generator, and a negative integer represents the inverse of the ^(th) generator.

Examples

open allclose all

Basic Examples  (1)Summary of the most common use cases

Take a permutation g in a group G:

Decompose g as a product of generators of G (negative integers represent inverse generators):

Out[2]=2

Reconstruct the permutation from the word:

Out[3]=3

Scope  (2)Survey of the scope of standard use cases

Decompose a permutation as a product of the default generators of a symmetric group:

Out[1]=1

Decompose the same permutation using a different set of generators for the same group:

Out[2]=2

The returned words are usually not optimal:

Out[2]=2

This is the optimal solution:

Out[3]=3

Check them:

Out[4]=4
Out[5]=5

Options  (3)Common values & functionality for each option

GroupBaseAction  (1)

The algorithm uses a table of coset representatives of the group stabilizers associated to a given base. The choice of this base might strongly affect the resulting word:

Out[2]=2
Out[3]=3

MaxIterations  (1)

Frequently, it is possible to improve the result by allowing the internal algorithm to perform a number of additional iterations:

Out[2]=2
Out[3]=3

Method  (1)

GroupElementToWord uses the Minkwitz algorithm, with a number of parameters:

Fine-tuning of those parameters may produce shorter words:

Out[2]=2
Out[3]=3
Out[4]=4

Applications  (1)Sample problems that can be solved with this function

Check that the mapping relating respective generators of these two groups is a homomorphism:

This implements the homomorphism, extending the mapping of generators to all elements:

Check that for any two elements of G1, the homomorphism property is obeyed:

Out[4]=4

In this case, the homomorphism is actually an isomorphism:

Out[5]=5

Properties & Relations  (4)Properties of the function, and connections to other functions

GroupElementFromWord reconstructs the original group element from the word:

Out[1]=1
Out[2]=2
Out[3]=3

Identity generators are not used, but affect the indexing of the other generators:

Out[2]=2

The identity permutation always corresponds to the empty word:

Out[2]=2

The element must belong to the group:

Out[2]=2
Out[3]=3

Neat Examples  (1)Surprising or curious use cases

The group of a 3×3×3 Rubik's cube is usually given in terms of six generators:

However, one of them is redundant, and the group can actually be constructed with only five face rotations:

Out[3]=3

This is a possible word expressing the sixth rotation in terms of the first five and their inverses:

Out[4]=4

Check it:

Out[5]=5

After removing the generators corresponding to opposite faces, the remaining four still move all facelets, but now they only generate a subgroup of index 2048:

Out[7]=7

This is because there are two disconnected sets of edge facelets:

Out[8]=8

Compare with the original situation:

Out[9]=9
Wolfram Research (2012), GroupElementToWord, Wolfram Language function, https://reference.wolfram.com/language/ref/GroupElementToWord.html.
Wolfram Research (2012), GroupElementToWord, Wolfram Language function, https://reference.wolfram.com/language/ref/GroupElementToWord.html.

Text

Wolfram Research (2012), GroupElementToWord, Wolfram Language function, https://reference.wolfram.com/language/ref/GroupElementToWord.html.

Wolfram Research (2012), GroupElementToWord, Wolfram Language function, https://reference.wolfram.com/language/ref/GroupElementToWord.html.

CMS

Wolfram Language. 2012. "GroupElementToWord." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/GroupElementToWord.html.

Wolfram Language. 2012. "GroupElementToWord." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/GroupElementToWord.html.

APA

Wolfram Language. (2012). GroupElementToWord. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/GroupElementToWord.html

Wolfram Language. (2012). GroupElementToWord. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/GroupElementToWord.html

BibTeX

@misc{reference.wolfram_2025_groupelementtoword, author="Wolfram Research", title="{GroupElementToWord}", year="2012", howpublished="\url{https://reference.wolfram.com/language/ref/GroupElementToWord.html}", note=[Accessed: 29-March-2025 ]}

@misc{reference.wolfram_2025_groupelementtoword, author="Wolfram Research", title="{GroupElementToWord}", year="2012", howpublished="\url{https://reference.wolfram.com/language/ref/GroupElementToWord.html}", note=[Accessed: 29-March-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_groupelementtoword, organization={Wolfram Research}, title={GroupElementToWord}, year={2012}, url={https://reference.wolfram.com/language/ref/GroupElementToWord.html}, note=[Accessed: 29-March-2025 ]}

@online{reference.wolfram_2025_groupelementtoword, organization={Wolfram Research}, title={GroupElementToWord}, year={2012}, url={https://reference.wolfram.com/language/ref/GroupElementToWord.html}, note=[Accessed: 29-March-2025 ]}