WOLFRAM

ImplicitRegion[cond,{x1,,xn}]

represents a region in that satisfies the conditions cond.

ImplicitRegion[cond,{{x1,a1,b1},}]

represents a region in that satisfies the conditions cond as well as etc.

Details

Examples

open allclose all

Basic Examples  (1)Summary of the most common use cases

Specify a disk as an ImplicitRegion:

Out[2]=2

A circle:

Out[4]=4

Scope  (27)Survey of the scope of standard use cases

Regions in 1D  (3)

A 0D region is a set of discrete points:

Out[1]=1

Find the points:

Out[2]=2

A purely 1D region is a union of (possibly unbounded) segments:

Out[1]=1

Find the segments:

Out[2]=2

A region with 1D and 0D components:

Out[1]=1

Find the components:

Out[2]=2

Compute the length:

Out[3]=3

Regions in 2D  (5)

A 0D region is a set of discrete points:

Out[1]=1

Find the points:

Out[2]=2

A purely 1D region is a curve:

Out[1]=1

Plot it:

Out[2]=2

A higher-degree algebraic curve:

Plot it:

Out[2]=2

A 2D region with two connected components:

Plot it:

Out[2]=2

A 2D region with lower-dimensional components:

Plot it:

Out[2]=2

Regions in 3D  (7)

A 0D region is a set of discrete points:

Out[1]=1

Find the points:

Out[2]=2

A purely 1D region is a curve; conic curves are intersections of a cone and a plane:

An ellipse:

Out[3]=3

A parabola:

Out[5]=5

A hyperbola:

Out[7]=7

A higher-degree algebraic curve:

Plot it:

Out[2]=2

The curve is an intersection of two surfaces:

Out[3]=3

A purely 2D region is a surface:

Plot it:

Out[2]=2

A higher-degree algebraic surface:

Plot it:

Out[2]=2

A purely 3D region is a solid:

Plot it:

Out[2]=2

A higher-degree algebraic solid:

Plot it:

Out[2]=2

Regions in D  (2)

A ball in :

Intersect with a 3D affine space and project on :

Out[3]=3

Plot it:

Out[4]=4

A torus embedded in :

Compute the area of the torus:

Out[2]=2

Embed the torus in using the mapping :

Out[3]=3

Plot it:

Out[4]=4

Properties  (10)

Implicitly described region:

Out[3]=3

Plot it:

Out[4]=4

Embedding dimension:

Out[5]=5

Geometric dimension:

Out[6]=6

Point membership test:

Out[2]=2

Plot it:

Out[3]=3

Get conditions for point membership:

Out[4]=4

Area and centroid:

Out[2]=2
Out[3]=3

Plot it:

Out[4]=4

Distance from a point:

Out[2]=2
Out[3]=3

Plot it:

Out[4]=4

Signed distance from a point:

Out[2]=2
Out[3]=3

Plot it:

Out[4]=4

Nearest point in the region:

Out[2]=2
Out[3]=3
Out[4]=4

Plot it:

Out[5]=5

Nearest points:

Out[7]=7

A trifolium is bounded:

Out[2]=2
Out[3]=3

Plot it:

Out[4]=4

Integrate over an implicitly defined region:

Out[2]=2

Optimize over an implicitly defined region:

Out[2]=2

Solve equations in an implicitly defined region:

Out[2]=2

Applications  (1)Sample problems that can be solved with this function

Find the projection of an implicit region on the plane in :

Visualize the region:

Out[2]=2

Visualize the projection:

Out[4]=4
Wolfram Research (2014), ImplicitRegion, Wolfram Language function, https://reference.wolfram.com/language/ref/ImplicitRegion.html.
Wolfram Research (2014), ImplicitRegion, Wolfram Language function, https://reference.wolfram.com/language/ref/ImplicitRegion.html.

Text

Wolfram Research (2014), ImplicitRegion, Wolfram Language function, https://reference.wolfram.com/language/ref/ImplicitRegion.html.

Wolfram Research (2014), ImplicitRegion, Wolfram Language function, https://reference.wolfram.com/language/ref/ImplicitRegion.html.

CMS

Wolfram Language. 2014. "ImplicitRegion." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/ImplicitRegion.html.

Wolfram Language. 2014. "ImplicitRegion." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/ImplicitRegion.html.

APA

Wolfram Language. (2014). ImplicitRegion. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ImplicitRegion.html

Wolfram Language. (2014). ImplicitRegion. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ImplicitRegion.html

BibTeX

@misc{reference.wolfram_2025_implicitregion, author="Wolfram Research", title="{ImplicitRegion}", year="2014", howpublished="\url{https://reference.wolfram.com/language/ref/ImplicitRegion.html}", note=[Accessed: 29-March-2025 ]}

@misc{reference.wolfram_2025_implicitregion, author="Wolfram Research", title="{ImplicitRegion}", year="2014", howpublished="\url{https://reference.wolfram.com/language/ref/ImplicitRegion.html}", note=[Accessed: 29-March-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_implicitregion, organization={Wolfram Research}, title={ImplicitRegion}, year={2014}, url={https://reference.wolfram.com/language/ref/ImplicitRegion.html}, note=[Accessed: 29-March-2025 ]}

@online{reference.wolfram_2025_implicitregion, organization={Wolfram Research}, title={ImplicitRegion}, year={2014}, url={https://reference.wolfram.com/language/ref/ImplicitRegion.html}, note=[Accessed: 29-March-2025 ]}