WOLFRAM

gives the inverse Jacobi elliptic function .

Details

  • Mathematical function, suitable for both symbolic and numerical manipulation.
  • gives the value of u for which .
  • InverseJacobiSN has branch cut discontinuities in the complex v plane with branch points at and infinity, and in the complex m plane with branch points at and infinity.
  • The inverse Jacobi elliptic functions are related to elliptic integrals.
  • For certain special arguments, InverseJacobiSN automatically evaluates to exact values.
  • InverseJacobiSN can be evaluated to arbitrary numerical precision.
  • InverseJacobiSN automatically threads over lists.

Examples

open allclose all

Basic Examples  (5)Summary of the most common use cases

Evaluate numerically:

Out[1]=1
Out[2]=2

Plot the function at different values of the modulus m:

Out[1]=1

Plot over a subset of the complexes:

Out[1]=1

Series expansions at the origin:

Out[1]=1
Out[2]=2

Series expansion at Infinity:

Out[1]=1

Scope  (29)Survey of the scope of standard use cases

Numerical Evaluation  (5)

Evaluate to high precision:

Out[1]=1

The precision of the input tracks the precision of the output:

Out[2]=2

Evaluate for complex arguments:

Out[1]=1

Evaluate InverseJacobiSN efficiently at high precision:

Out[1]=1
Out[2]=2

Compute average-case statistical intervals using Around:

Out[1]=1

Compute the elementwise values of an array:

Out[1]=1

Or compute the matrix InverseJacobiSN function using MatrixFunction:

Out[2]=2

Specific Values  (4)

Simple exact values are generated automatically:

Out[1]=1
Out[2]=2

Value at infinity:

Out[1]=1

Find a real root of the equation TemplateBox[{x, {1, /, 3}}, InverseJacobiSN]=1:

Out[1]=1
Out[2]=2

Parity transformation is automatically applied:

Out[1]=1

Visualization  (3)

Plot InverseJacobiSN for various values of the second parameter :

Out[1]=1

Plot InverseJacobiSN as a function of its parameter :

Out[1]=1

Plot the real part of TemplateBox[{z, 2}, InverseJacobiSN]:

Out[1]=1

Plot the imaginary part of TemplateBox[{z, 2}, InverseJacobiSN]:

Out[2]=2

Function Properties  (6)

InverseJacobiSN is not an analytic function:

Out[1]=1

It has both singularities and discontinuities:

Out[2]=2
Out[3]=3

TemplateBox[{x, {1, /, 3}}, InverseJacobiSN] is nondecreasing on its real domain:

Out[1]=1

TemplateBox[{x, {1, /, 3}}, InverseJacobiSN] is injective:

Out[1]=1
Out[2]=2

TemplateBox[{x, {1, /, 3}}, InverseJacobiSN] is not surjective:

Out[1]=1
Out[2]=2

TemplateBox[{x, {1, /, 3}}, InverseJacobiSN] is neither non-negative nor non-positive on its real domain:

Out[1]=1

TemplateBox[{x, {1, /, 3}}, InverseJacobiSN] is neither convex nor concave on its real domain:

Out[1]=1

Differentiation and Integration  (4)

First derivative:

Out[1]=1

Higher derivatives:

Out[1]=1

Plot higher derivatives for :

Out[2]=2

Differentiate InverseJacobiSN with respect to the second argument :

Out[1]=1

Definite integral of an odd function over an interval centered at the origin is 0:

Out[1]=1

Series Expansions  (2)

Taylor expansion for TemplateBox[{nu, m}, InverseJacobiSN] around :

Out[1]=1

Plot the first three approximations for TemplateBox[{nu, 2}, InverseJacobiSN] around :

Out[2]=2

Taylor expansion for TemplateBox[{nu, m}, InverseJacobiSN] around :

Out[1]=1

Plot the first three approximations for TemplateBox[{{1, /, 2}, m}, InverseJacobiSN] around :

Out[2]=2

Function Identities and Simplifications  (2)

InverseJacobiSN is the inverse function of JacobiSN:

Out[1]=1

Compose with inverse function:

Out[1]=1

Use PowerExpand to disregard multivaluedness of the inverse function:

Out[2]=2

Other Features  (3)

InverseJacobiSN threads elementwise over lists:

Out[1]=1

InverseJacobiSN can be applied to a power series:

Out[1]=1

TraditionalForm formatting:

Generalizations & Extensions  (1)Generalized and extended use cases

InverseJacobiSN can be applied to a power series:

Out[1]=1

Applications  (1)Sample problems that can be solved with this function

Plot contours of constant real and imaginary parts in the complex plane:

Out[1]=1

Properties & Relations  (1)Properties of the function, and connections to other functions

Obtain InverseJacobiSN from solving equations containing elliptic functions:

Out[1]=1
Wolfram Research (1988), InverseJacobiSN, Wolfram Language function, https://reference.wolfram.com/language/ref/InverseJacobiSN.html.
Wolfram Research (1988), InverseJacobiSN, Wolfram Language function, https://reference.wolfram.com/language/ref/InverseJacobiSN.html.

Text

Wolfram Research (1988), InverseJacobiSN, Wolfram Language function, https://reference.wolfram.com/language/ref/InverseJacobiSN.html.

Wolfram Research (1988), InverseJacobiSN, Wolfram Language function, https://reference.wolfram.com/language/ref/InverseJacobiSN.html.

CMS

Wolfram Language. 1988. "InverseJacobiSN." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/InverseJacobiSN.html.

Wolfram Language. 1988. "InverseJacobiSN." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/InverseJacobiSN.html.

APA

Wolfram Language. (1988). InverseJacobiSN. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/InverseJacobiSN.html

Wolfram Language. (1988). InverseJacobiSN. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/InverseJacobiSN.html

BibTeX

@misc{reference.wolfram_2025_inversejacobisn, author="Wolfram Research", title="{InverseJacobiSN}", year="1988", howpublished="\url{https://reference.wolfram.com/language/ref/InverseJacobiSN.html}", note=[Accessed: 01-June-2025 ]}

@misc{reference.wolfram_2025_inversejacobisn, author="Wolfram Research", title="{InverseJacobiSN}", year="1988", howpublished="\url{https://reference.wolfram.com/language/ref/InverseJacobiSN.html}", note=[Accessed: 01-June-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_inversejacobisn, organization={Wolfram Research}, title={InverseJacobiSN}, year={1988}, url={https://reference.wolfram.com/language/ref/InverseJacobiSN.html}, note=[Accessed: 01-June-2025 ]}

@online{reference.wolfram_2025_inversejacobisn, organization={Wolfram Research}, title={InverseJacobiSN}, year={1988}, url={https://reference.wolfram.com/language/ref/InverseJacobiSN.html}, note=[Accessed: 01-June-2025 ]}