InverseWishartMatrixDistribution
InverseWishartMatrixDistribution[ν,Σ]
represents an inverse Wishart matrix distribution with ν degrees of freedom and covariance matrix Σ.
Details
- The probability density for a symmetric matrix in an inverse Wishart matrix distribution is proportional to , where is the size of matrix Σ.
- For a matrix distributed as InverseWishartMatrixDistribution[ν,Σ], the inverse is distributed as WishartMatrixDistribution[ν,Σ-1].
- The covariance matrix can be any positive definite symmetric matrix of dimensions and ν can be any real number greater than .
- InverseWishartMatrixDistribution can be used with such functions as MatrixPropertyDistribution, EstimatedDistribution, and RandomVariate.
Examples
open allclose allBasic Examples (3)
Generate a pseudorandom matrix:
Check that it is positive definite:
Sample eigenvalues of an inverse Wishart random matrix using MatrixPropertyDistribution:
Scope (6)
Generate a single pseudorandom matrix:
Generate a set of pseudorandom matrices:
Compute statistical properties numerically:
Numerically approximate expectation of the largest matrix eigenvalue :
Distribution parameters estimation:
Estimate the distribution parameters from sample data:
Compare LogLikelihood for both distributions:
Properties & Relations (3)
, where and are independent Gaussian vector and Wishart matrix follows HotellingTSquareDistribution:
Use MatrixPropertyDistribution to sample expressions :
Any diagonal element of inverse Wishart random matrix follows scaled inverse χ2 distribution:
Diagonal elements are not independent:
For any nonzero vector and inverse Wishart matrix with scale matrix , is χ2 distributed:
Text
Wolfram Research (2015), InverseWishartMatrixDistribution, Wolfram Language function, https://reference.wolfram.com/language/ref/InverseWishartMatrixDistribution.html (updated 2017).
CMS
Wolfram Language. 2015. "InverseWishartMatrixDistribution." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2017. https://reference.wolfram.com/language/ref/InverseWishartMatrixDistribution.html.
APA
Wolfram Language. (2015). InverseWishartMatrixDistribution. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/InverseWishartMatrixDistribution.html