WishartMatrixDistribution
✖
WishartMatrixDistribution
represents a Wishart matrix distribution with ν degrees of freedom and covariance matrix Σ.
Details

- WishartMatrixDistribution is the distribution of the sample covariance from ν independent realizations of a multivariate Gaussian distribution with covariance matrix Σ when the degrees of freedom parameter ν is an integer.
- WishartMatrixDistribution is also known as Wishart–Laguerre ensemble.
- The probability density for a symmetric matrix
in a Wishart matrix distribution is proportional to
, where
is the size of matrix Σ.
- The covariance matrix
can be any positive definite symmetric matrix of dimensions
and ν can be any real number greater than
.
- WishartMatrixDistribution can be used with such functions as MatrixPropertyDistribution, EstimatedDistribution, and RandomVariate.
Examples
open allclose allBasic Examples (3)Summary of the most common use cases
Generate a pseudorandom matrix:

https://wolfram.com/xid/0dblm6mpdlz4pnsn7u-lcf25m

Check that it is symmetric and positive definite:

https://wolfram.com/xid/0dblm6mpdlz4pnsn7u-436hr

Sample eigenvalues of a Wishart random matrix using MatrixPropertyDistribution:

https://wolfram.com/xid/0dblm6mpdlz4pnsn7u-4dxs2
Estimate joint distribution of eigenvalues:

https://wolfram.com/xid/0dblm6mpdlz4pnsn7u-eq63i5


https://wolfram.com/xid/0dblm6mpdlz4pnsn7u-sxr


https://wolfram.com/xid/0dblm6mpdlz4pnsn7u-g5k

Scope (6)Survey of the scope of standard use cases
Generate a single pseudorandom matrix:

https://wolfram.com/xid/0dblm6mpdlz4pnsn7u-d13sc9

Generate a set of pseudorandom matrices:

https://wolfram.com/xid/0dblm6mpdlz4pnsn7u-y6wkjj


https://wolfram.com/xid/0dblm6mpdlz4pnsn7u-exxjnv

Compute statistical properties numerically:

https://wolfram.com/xid/0dblm6mpdlz4pnsn7u-6gedk9
Numerically approximate expectation of the largest matrix eigenvalue :

https://wolfram.com/xid/0dblm6mpdlz4pnsn7u-3m1a2c

Distribution parameters estimation:

https://wolfram.com/xid/0dblm6mpdlz4pnsn7u-0fi0u2
Estimate the distribution parameters from sample data:

https://wolfram.com/xid/0dblm6mpdlz4pnsn7u-epi747

Compare LogLikelihood for both distributions:

https://wolfram.com/xid/0dblm6mpdlz4pnsn7u-2slvjw


https://wolfram.com/xid/0dblm6mpdlz4pnsn7u-h521li


https://wolfram.com/xid/0dblm6mpdlz4pnsn7u-6eko8

Applications (2)Sample problems that can be solved with this function
When n and p (the dimension of the covariance matrix Σ) are both large, the scaled largest eigenvalue of a matrix from a Wishart ensemble with identity covariance is approximately distributed as a Tracy–Widom distribution:

https://wolfram.com/xid/0dblm6mpdlz4pnsn7u-hkqwkr
Sample the scaled largest eigenvalue:

https://wolfram.com/xid/0dblm6mpdlz4pnsn7u-ez2ac6
Check goodness of fit with TracyWidomDistribution:

https://wolfram.com/xid/0dblm6mpdlz4pnsn7u-gd9lj


https://wolfram.com/xid/0dblm6mpdlz4pnsn7u-deemk4

Algebraically independent components of a symmetric Wishart matrix have a known PDF:

https://wolfram.com/xid/0dblm6mpdlz4pnsn7u-bbmko0

https://wolfram.com/xid/0dblm6mpdlz4pnsn7u-qkizda

https://wolfram.com/xid/0dblm6mpdlz4pnsn7u-fmq8va
Build the distribution of independent components of a Wishart matrix:

https://wolfram.com/xid/0dblm6mpdlz4pnsn7u-e05of2

https://wolfram.com/xid/0dblm6mpdlz4pnsn7u-b3zfyf

Find the joint distribution of a diagonal element:

https://wolfram.com/xid/0dblm6mpdlz4pnsn7u-gl2gqn

Use MatrixPropertyDistribution to sample diagonal elements of Wishart matrices:

https://wolfram.com/xid/0dblm6mpdlz4pnsn7u-ftj7qd

https://wolfram.com/xid/0dblm6mpdlz4pnsn7u-dxkkan


https://wolfram.com/xid/0dblm6mpdlz4pnsn7u-kmkqw0

Properties & Relations (4)Properties of the function, and connections to other functions
Use MatrixPropertyDistribution to represent the scaled eigenvalues of a Wishart random matrix with identity covariance:

https://wolfram.com/xid/0dblm6mpdlz4pnsn7u-rxoefr
The limiting distribution of eigenvalues follows MarchenkoPasturDistribution:

https://wolfram.com/xid/0dblm6mpdlz4pnsn7u-oww4ea

https://wolfram.com/xid/0dblm6mpdlz4pnsn7u-dkiqlj

Compare the histogram of the eigenvalues with the PDF:

https://wolfram.com/xid/0dblm6mpdlz4pnsn7u-3izrql

The expression , where
and
are, respectively, an independent Gaussian vector and Wishart matrix, follows HotellingTSquareDistribution:

https://wolfram.com/xid/0dblm6mpdlz4pnsn7u-bsax8f
Use MatrixPropertyDistribution to sample expressions :

https://wolfram.com/xid/0dblm6mpdlz4pnsn7u-ck8vqy

https://wolfram.com/xid/0dblm6mpdlz4pnsn7u-bcpdu4


https://wolfram.com/xid/0dblm6mpdlz4pnsn7u-lidu3v

Diagonal elements of a Wishart random matrix each follow a scaled χ2 distribution:

https://wolfram.com/xid/0dblm6mpdlz4pnsn7u-uslpw
Test against applicably scaled χ2 distributions:

https://wolfram.com/xid/0dblm6mpdlz4pnsn7u-fvpoh2

https://wolfram.com/xid/0dblm6mpdlz4pnsn7u-q5ery4


https://wolfram.com/xid/0dblm6mpdlz4pnsn7u-mb30uv

https://wolfram.com/xid/0dblm6mpdlz4pnsn7u-bgvtqd

Diagonal elements are not independent:

https://wolfram.com/xid/0dblm6mpdlz4pnsn7u-ipjqm3


https://wolfram.com/xid/0dblm6mpdlz4pnsn7u-l2xbzm

For any nonzero vector and Wishart matrix
with scale matrix
,
is χ2 distributed:

https://wolfram.com/xid/0dblm6mpdlz4pnsn7u-dus3vi

https://wolfram.com/xid/0dblm6mpdlz4pnsn7u-b4tu5a


https://wolfram.com/xid/0dblm6mpdlz4pnsn7u-fmhnqz

Wolfram Research (2015), WishartMatrixDistribution, Wolfram Language function, https://reference.wolfram.com/language/ref/WishartMatrixDistribution.html (updated 2017).
Text
Wolfram Research (2015), WishartMatrixDistribution, Wolfram Language function, https://reference.wolfram.com/language/ref/WishartMatrixDistribution.html (updated 2017).
Wolfram Research (2015), WishartMatrixDistribution, Wolfram Language function, https://reference.wolfram.com/language/ref/WishartMatrixDistribution.html (updated 2017).
CMS
Wolfram Language. 2015. "WishartMatrixDistribution." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2017. https://reference.wolfram.com/language/ref/WishartMatrixDistribution.html.
Wolfram Language. 2015. "WishartMatrixDistribution." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2017. https://reference.wolfram.com/language/ref/WishartMatrixDistribution.html.
APA
Wolfram Language. (2015). WishartMatrixDistribution. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/WishartMatrixDistribution.html
Wolfram Language. (2015). WishartMatrixDistribution. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/WishartMatrixDistribution.html
BibTeX
@misc{reference.wolfram_2025_wishartmatrixdistribution, author="Wolfram Research", title="{WishartMatrixDistribution}", year="2017", howpublished="\url{https://reference.wolfram.com/language/ref/WishartMatrixDistribution.html}", note=[Accessed: 29-March-2025
]}
BibLaTeX
@online{reference.wolfram_2025_wishartmatrixdistribution, organization={Wolfram Research}, title={WishartMatrixDistribution}, year={2017}, url={https://reference.wolfram.com/language/ref/WishartMatrixDistribution.html}, note=[Accessed: 29-March-2025
]}