InverseWishartMatrixDistribution[ν,Σ]
represents an inverse Wishart matrix distribution with ν degrees of freedom and covariance matrix Σ.
 
     
   InverseWishartMatrixDistribution
InverseWishartMatrixDistribution[ν,Σ]
represents an inverse Wishart matrix distribution with ν degrees of freedom and covariance matrix Σ.
Details
 
   - The probability density for a symmetric matrix  in an inverse Wishart matrix distribution is proportional to in an inverse Wishart matrix distribution is proportional to , where , where is the size of matrix Σ. is the size of matrix Σ.
- For a matrix  distributed as InverseWishartMatrixDistribution[ν,Σ], the inverse distributed as InverseWishartMatrixDistribution[ν,Σ], the inverse is distributed as WishartMatrixDistribution[ν,Σ-1]. is distributed as WishartMatrixDistribution[ν,Σ-1].
- The covariance matrix  can be any positive definite symmetric matrix of dimensions can be any positive definite symmetric matrix of dimensions and ν can be any real number greater than and ν can be any real number greater than . .
- InverseWishartMatrixDistribution can be used with such functions as MatrixPropertyDistribution, EstimatedDistribution, and RandomVariate.
Examples
open all close allBasic Examples (3)
Generate a pseudorandom matrix:
Check that it is positive definite:
Sample eigenvalues of an inverse Wishart random matrix using MatrixPropertyDistribution:
Scope (6)
Generate a single pseudorandom matrix:
Generate a set of pseudorandom matrices:
Compute statistical properties numerically:
Numerically approximate expectation of the largest matrix eigenvalue  :
:
Distribution parameters estimation:
Estimate the distribution parameters from sample data:
Compare LogLikelihood for both distributions:
Properties & Relations (3)
 , where
, where  and
 and  are independent Gaussian vector and Wishart matrix follows HotellingTSquareDistribution:
 are independent Gaussian vector and Wishart matrix follows HotellingTSquareDistribution:
Use MatrixPropertyDistribution to sample expressions  :
:
Any diagonal element of inverse Wishart random matrix follows scaled inverse χ2 distribution:
Diagonal elements are not independent:
For any nonzero vector  and inverse Wishart matrix
 and inverse Wishart matrix  with scale matrix
 with scale matrix  ,
,  is χ2 distributed:
 is χ2 distributed:
Related Guides
Text
Wolfram Research (2015), InverseWishartMatrixDistribution, Wolfram Language function, https://reference.wolfram.com/language/ref/InverseWishartMatrixDistribution.html (updated 2017).
CMS
Wolfram Language. 2015. "InverseWishartMatrixDistribution." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2017. https://reference.wolfram.com/language/ref/InverseWishartMatrixDistribution.html.
APA
Wolfram Language. (2015). InverseWishartMatrixDistribution. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/InverseWishartMatrixDistribution.html
BibTeX
@misc{reference.wolfram_2025_inversewishartmatrixdistribution, author="Wolfram Research", title="{InverseWishartMatrixDistribution}", year="2017", howpublished="\url{https://reference.wolfram.com/language/ref/InverseWishartMatrixDistribution.html}", note=[Accessed: 30-October-2025]}
BibLaTeX
@online{reference.wolfram_2025_inversewishartmatrixdistribution, organization={Wolfram Research}, title={InverseWishartMatrixDistribution}, year={2017}, url={https://reference.wolfram.com/language/ref/InverseWishartMatrixDistribution.html}, note=[Accessed: 30-October-2025]}