JacobiAmplitude

JacobiAmplitude[u,m]

gives the amplitude TemplateBox[{u, m}, JacobiAmplitude] for Jacobi elliptic functions.

Details

  • Mathematical function, suitable for both symbolic and numerical manipulation.
  • JacobiAmplitude[u,m] converts from the argument u for an elliptic function to the amplitude ϕ.
  • JacobiAmplitude is the inverse of the elliptic integral of the first kind. If u=TemplateBox[{phi, m}, EllipticF], then phi=TemplateBox[{u, m}, JacobiAmplitude].
  • JacobiAmplitude[u,m] has a branch cut discontinuity in the complex u plane running from 2 s TemplateBox[{m}, EllipticK]+ⅈ (4 t+1) TemplateBox[{{1, -, m}}, EllipticK] to 2 s TemplateBox[{m}, EllipticK]+ⅈ (4 t+3) TemplateBox[{{1, -, m}}, EllipticK] for every pair of integers and .
  • For certain special arguments, JacobiAmplitude automatically evaluates to exact values.
  • JacobiAmplitude can be evaluated to arbitrary numerical precision.
  • JacobiAmplitude automatically threads over lists.

Examples

open allclose all

Basic Examples  (4)

Evaluate numerically:

Plot over a subset of the reals:

Plot over a subset of the complexes:

Series expansions about the origin:

Scope  (26)

Numerical Evaluation  (5)

Evaluate to high precision:

The precision of the output tracks the precision of the input:

Evaluate for complex arguments:

Evaluate JacobiAmplitude efficiently at high precision:

Compute average-case statistical intervals using Around:

Compute the elementwise values of an array:

Or compute the matrix JacobiAmplitude function using MatrixFunction:

Specific Values  (4)

Simple exact values are generated automatically:

Values at infinity for some special cases:

Find a root of TemplateBox[{x, {-, 3}}, JacobiAmplitude]⩵1:

Parity transformation is automatically applied:

Visualization  (3)

Plot the JacobiAmplitude functions for various values of parameter :

Plot JacobiAmplitude as a function of its parameter :

Plot the real part of TemplateBox[{z, 2}, JacobiAmplitude]:

Plot the imaginary part of TemplateBox[{z, 2}, JacobiAmplitude]:

Function Properties  (5)

TemplateBox[{x, {2, /, 3}}, JacobiAmplitude] is an analytic function of x:

It has no singularities or discontinuities:

TemplateBox[{x, {2, /, 3}}, JacobiAmplitude] is injective:

TemplateBox[{x, {2, /, 3}}, JacobiAmplitude] is surjective:

JacobiAmplitude is neither non-negative nor non-positive:

JacobiAmplitude is neither convex nor concave:

Differentiation  (3)

First derivative:

Higher derivatives:

Plot higher derivatives for :

Derivative with respect to :

Series Expansions  (3)

Taylor expansion for TemplateBox[{x, {2, /, 3}}, JacobiAmplitude]:

Plot the first three approximations for TemplateBox[{x, {2, /, 3}}, JacobiAmplitude] around :

Taylor expansion for TemplateBox[{1, m}, JacobiAmplitude]:

Plot the first three approximations for TemplateBox[{1, m}, JacobiAmplitude] around :

JacobiAmplitude can be applied to a power series:

Function Representations  (3)

JacobiAmplitude is the inverse of EllipticF:

Integral representation:

TraditionalForm formatting:

Applications  (4)

Solution of the pendulum equation in the overswing mode:

Check with the pendulum equation:

Plot the solution:

Relativistic solution of the sineGordon equation:

Verify the solution by substituting into the sineGordon equation:

Plot the solution for different values of and :

Form and plot generalized Fourier series:

Spherical triangle from an elliptic parameter and triple such that :

Angles at vertices , and and sides opposite to each corresponding vertex:

Verify Cagnoli's equation, which relates the measurements of all the angles and sides of a spherical triangle:

Compute the area of the triangle, also known as the spherical excess:

Compute the excess using L'Huilier's theorem [MathWorld]:

Compute corresponding points on 3D unit sphere:

Check consistency between points found and spherical sides:

Visualize the triangle:

Properties & Relations  (5)

Compose with inverse functions:

Use PowerExpand to disregard the multivaluedness of the inverse function:

Apply trigonometric functions to JacobiAmplitude:

Solve a transcendental equation:

Obtain from a differential equation:

JacobiAmplitude has branch cuts from 2 s TemplateBox[{m}, EllipticK]+ⅈ (4 t+1) TemplateBox[{{1, -, m}}, EllipticK] to 2 s TemplateBox[{m}, EllipticK]+ⅈ (4 t+3) TemplateBox[{{1, -, m}}, EllipticK] for any integers and :

Visualize branch cuts for different moduli:

Possible Issues  (1)

The branch cuts of TemplateBox[{u, m}, JacobiAmplitude] for cross the real axis at 2(2 s+1) TemplateBox[{{1, /, m}}, EllipticK]/sqrt(m) for integer :

For physical applications where a continuous version of the amplitude is desired for , use the following definition:

The preceding function coincides with sin^(-1)(TemplateBox[{u, m}, JacobiSN]) for real and :

Wolfram Research (1988), JacobiAmplitude, Wolfram Language function, https://reference.wolfram.com/language/ref/JacobiAmplitude.html (updated 2020).

Text

Wolfram Research (1988), JacobiAmplitude, Wolfram Language function, https://reference.wolfram.com/language/ref/JacobiAmplitude.html (updated 2020).

CMS

Wolfram Language. 1988. "JacobiAmplitude." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2020. https://reference.wolfram.com/language/ref/JacobiAmplitude.html.

APA

Wolfram Language. (1988). JacobiAmplitude. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/JacobiAmplitude.html

BibTeX

@misc{reference.wolfram_2024_jacobiamplitude, author="Wolfram Research", title="{JacobiAmplitude}", year="2020", howpublished="\url{https://reference.wolfram.com/language/ref/JacobiAmplitude.html}", note=[Accessed: 10-September-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_jacobiamplitude, organization={Wolfram Research}, title={JacobiAmplitude}, year={2020}, url={https://reference.wolfram.com/language/ref/JacobiAmplitude.html}, note=[Accessed: 10-September-2024 ]}