JacobiAmplitude
✖
JacobiAmplitude
更多信息

- 数学函数,同时适合符号和数值运算.
- JacobiAmplitude[u,m] 把一个椭圆函数的自变量 u 转换成振幅 ϕ.
- JacobiAmplitude 是第一类型的椭圆积分的逆运算. 如果
,则
.
- 对于每对整数
和
,JacobiAmplitude[u,m] 在复平面 u 上有一个分支切割断点,从
到
.
- 对某些特定变量值,JacobiAmplitude 自动运算出精确值.
- JacobiAmplitude 可计算到任意数值精度.
- JacobiAmplitude 自动逐项作用于列表.
范例
打开所有单元关闭所有单元基本范例 (4)常见实例总结

https://wolfram.com/xid/0dc3l0sh425c-kzd066


https://wolfram.com/xid/0dc3l0sh425c-wm2qg


https://wolfram.com/xid/0dc3l0sh425c-rpl8dc


https://wolfram.com/xid/0dc3l0sh425c-n1ltu7


https://wolfram.com/xid/0dc3l0sh425c-eurjnp

范围 (26)标准用法实例范围调查
数值运算 (5)

https://wolfram.com/xid/0dc3l0sh425c-caez0p


https://wolfram.com/xid/0dc3l0sh425c-idcd3s


https://wolfram.com/xid/0dc3l0sh425c-debjig

用高精度高效评估 JacobiAmplitude:

https://wolfram.com/xid/0dc3l0sh425c-di5gcr


https://wolfram.com/xid/0dc3l0sh425c-bq2c6r

使用 Around 计算平均值统计区间:

https://wolfram.com/xid/0dc3l0sh425c-zogpxw


https://wolfram.com/xid/0dc3l0sh425c-ls2oe2

或使用 MatrixFunction 计算矩阵 JacobiAmplitude 函数:

https://wolfram.com/xid/0dc3l0sh425c-4we4ma

特殊值 (4)

https://wolfram.com/xid/0dc3l0sh425c-dfty6e


https://wolfram.com/xid/0dc3l0sh425c-kedmi


https://wolfram.com/xid/0dc3l0sh425c-crwrl3


https://wolfram.com/xid/0dc3l0sh425c-cw39qs


https://wolfram.com/xid/0dc3l0sh425c-f2hrld


https://wolfram.com/xid/0dc3l0sh425c-ghcykx


https://wolfram.com/xid/0dc3l0sh425c-hvgb9s

可视化 (3)
绘制各种参数值 的 JacobiAmplitude 函数:

https://wolfram.com/xid/0dc3l0sh425c-ecj8m7

按照参数 的函数绘制 JacobiAmplitude:

https://wolfram.com/xid/0dc3l0sh425c-du62z6


https://wolfram.com/xid/0dc3l0sh425c-c38j55


https://wolfram.com/xid/0dc3l0sh425c-nsyj87

函数属性 (5)

https://wolfram.com/xid/0dc3l0sh425c-b66emn


https://wolfram.com/xid/0dc3l0sh425c-w6vmsi


https://wolfram.com/xid/0dc3l0sh425c-019l1x


https://wolfram.com/xid/0dc3l0sh425c-xn3e9m


https://wolfram.com/xid/0dc3l0sh425c-1fp4w3


https://wolfram.com/xid/0dc3l0sh425c-jgnj9c


https://wolfram.com/xid/0dc3l0sh425c-5sgkde

JacobiAmplitude 不是非负也不是非正函数:

https://wolfram.com/xid/0dc3l0sh425c-tblqsv

JacobiAmplitude 不是凸函数也不是凹函数:

https://wolfram.com/xid/0dc3l0sh425c-raoxzk

微分 (3)
级数展开式 (3)

https://wolfram.com/xid/0dc3l0sh425c-ewr1h8


https://wolfram.com/xid/0dc3l0sh425c-binhar


https://wolfram.com/xid/0dc3l0sh425c-c7itxf


https://wolfram.com/xid/0dc3l0sh425c-jkkunh

JacobiAmplitude 可应用于幂级数:

https://wolfram.com/xid/0dc3l0sh425c-1000fu


https://wolfram.com/xid/0dc3l0sh425c-bg4epz

函数表示 (3)
JacobiAmplitude 是 EllipticF 的反函数:

https://wolfram.com/xid/0dc3l0sh425c-cajgfk


https://wolfram.com/xid/0dc3l0sh425c-bp7jmj

TraditionalForm 格式:

https://wolfram.com/xid/0dc3l0sh425c-b156ch

应用 (4)用该函数可以解决的问题范例

https://wolfram.com/xid/0dc3l0sh425c-izefg0

https://wolfram.com/xid/0dc3l0sh425c-c92izb


https://wolfram.com/xid/0dc3l0sh425c-bahnfv


https://wolfram.com/xid/0dc3l0sh425c-57smrj

https://wolfram.com/xid/0dc3l0sh425c-gpoaen


https://wolfram.com/xid/0dc3l0sh425c-fyjkmj


https://wolfram.com/xid/0dc3l0sh425c-u71v6t


https://wolfram.com/xid/0dc3l0sh425c-p8r6y


https://wolfram.com/xid/0dc3l0sh425c-cvpgnt

https://wolfram.com/xid/0dc3l0sh425c-c19p3g

https://wolfram.com/xid/0dc3l0sh425c-lvlsl5

验证 Cagnoli 方程,它与球面三角形的所有角度和边的测量有关:

https://wolfram.com/xid/0dc3l0sh425c-qlncwz


https://wolfram.com/xid/0dc3l0sh425c-yyl7df

用 L'Huilier 定理 [MathWorld] 计算球面角盈:

https://wolfram.com/xid/0dc3l0sh425c-kw3zcv


https://wolfram.com/xid/0dc3l0sh425c-0q68zm

https://wolfram.com/xid/0dc3l0sh425c-mzgpqo


https://wolfram.com/xid/0dc3l0sh425c-16pfm5

属性和关系 (5)函数的属性及与其他函数的关联

https://wolfram.com/xid/0dc3l0sh425c-emofur

用 PowerExpand 略去反函数的多值性:

https://wolfram.com/xid/0dc3l0sh425c-fzgyvy

将三角函数应用到 JacobiAmplitude:

https://wolfram.com/xid/0dc3l0sh425c-kmykn1


https://wolfram.com/xid/0dc3l0sh425c-iy4yu


https://wolfram.com/xid/0dc3l0sh425c-ntn94

对于任意整数 和
,JacobiAmplitude 有一个分支切割,从
到
:

https://wolfram.com/xid/0dc3l0sh425c-e40v07


https://wolfram.com/xid/0dc3l0sh425c-rxjbuq


https://wolfram.com/xid/0dc3l0sh425c-0qvbok

https://wolfram.com/xid/0dc3l0sh425c-d9092

Wolfram Research (1988),JacobiAmplitude,Wolfram 语言函数,https://reference.wolfram.com/language/ref/JacobiAmplitude.html (更新于 2020 年).
文本
Wolfram Research (1988),JacobiAmplitude,Wolfram 语言函数,https://reference.wolfram.com/language/ref/JacobiAmplitude.html (更新于 2020 年).
Wolfram Research (1988),JacobiAmplitude,Wolfram 语言函数,https://reference.wolfram.com/language/ref/JacobiAmplitude.html (更新于 2020 年).
CMS
Wolfram 语言. 1988. "JacobiAmplitude." Wolfram 语言与系统参考资料中心. Wolfram Research. 最新版本 2020. https://reference.wolfram.com/language/ref/JacobiAmplitude.html.
Wolfram 语言. 1988. "JacobiAmplitude." Wolfram 语言与系统参考资料中心. Wolfram Research. 最新版本 2020. https://reference.wolfram.com/language/ref/JacobiAmplitude.html.
APA
Wolfram 语言. (1988). JacobiAmplitude. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/JacobiAmplitude.html 年
Wolfram 语言. (1988). JacobiAmplitude. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/JacobiAmplitude.html 年
BibTeX
@misc{reference.wolfram_2025_jacobiamplitude, author="Wolfram Research", title="{JacobiAmplitude}", year="2020", howpublished="\url{https://reference.wolfram.com/language/ref/JacobiAmplitude.html}", note=[Accessed: 06-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_jacobiamplitude, organization={Wolfram Research}, title={JacobiAmplitude}, year={2020}, url={https://reference.wolfram.com/language/ref/JacobiAmplitude.html}, note=[Accessed: 06-April-2025
]}