JuliaSetPoints
✖
JuliaSetPoints
returns a list of coordinates approximating the real and imaginary parts of the complex numbers in the Julia set of the rational function f of the variable z.
returns a list of coordinates of points approximating the Julia set of the function .
Details and Options

- The Julia set of a function f is the closure of the set of all repelling fixed points of f.
- JuliaSetPoints uses the same "InverseIteration" algorithm as JuliaSetPlot.
- JuliaSetPoints has the options:
-
"ClosenessTolerance" 0.004 minimum distance between points "Bound" 6 radius around the origin in which to search - For polynomial functions, "Bound" is automatically determined to ensure the entire Julia set is captured.
Examples
open allclose allBasic Examples (2)Summary of the most common use cases
Find points of the Julia set of :

https://wolfram.com/xid/0cpudo4genslna-nzi1mj


https://wolfram.com/xid/0cpudo4genslna-bmhim6

Find points of the Julia set of :

https://wolfram.com/xid/0cpudo4genslna-sg0li5


https://wolfram.com/xid/0cpudo4genslna-w6agjd

Scope (2)Survey of the scope of standard use cases
JuliaSetPoints[c] generates the Julia set of a function of the form :

https://wolfram.com/xid/0cpudo4genslna-3z9h7p

JuliaSetPoints[f,z] generates the Julia set of polynomials or more general rational functions:

https://wolfram.com/xid/0cpudo4genslna-d60e6r


https://wolfram.com/xid/0cpudo4genslna-ndet5d

Options (2)Common values & functionality for each option
"ClosenessTolerance" (1)
Increase "ClosenessTolerance" to make a quick, low-resolution picture of a Julia set:

https://wolfram.com/xid/0cpudo4genslna-20ttz1


https://wolfram.com/xid/0cpudo4genslna-x60uy8

Decrease "ClosenessTolerance" to make a high-resolution picture of a small part of a Julia set:

https://wolfram.com/xid/0cpudo4genslna-vg0xeu

Properties & Relations (2)Properties of the function, and connections to other functions
JuliaSetPlot[c] generates essentially a ListPlot of the result of JuliaSetPoints[c]:

https://wolfram.com/xid/0cpudo4genslna-h3eg8n


https://wolfram.com/xid/0cpudo4genslna-4eu27

JuliaSetPoints[c] is the same as JuliaSetPoints[z^2+c,z]:

https://wolfram.com/xid/0cpudo4genslna-bepum6

Possible Issues (1)Common pitfalls and unexpected behavior
If the value of the "Bound" option is too low for a rational function, no points may be returned:

https://wolfram.com/xid/0cpudo4genslna-rm7kfb



https://wolfram.com/xid/0cpudo4genslna-jsiz8t

Some very large Julia sets can take a long time to compute with this method:

https://wolfram.com/xid/0cpudo4genslna-8ah7n9

Interactive Examples (1)Examples with interactive outputs
Neat Examples (3)Surprising or curious use cases
Stack successively finer approximations to a Julia set:

https://wolfram.com/xid/0cpudo4genslna-cku1d6

Add a dimension by varying a parameter:

https://wolfram.com/xid/0cpudo4genslna-b1qk4r

Visualize the Julia sets given by points on part of the unit circle:

https://wolfram.com/xid/0cpudo4genslna-vawpo0

Wolfram Research (2014), JuliaSetPoints, Wolfram Language function, https://reference.wolfram.com/language/ref/JuliaSetPoints.html.
Text
Wolfram Research (2014), JuliaSetPoints, Wolfram Language function, https://reference.wolfram.com/language/ref/JuliaSetPoints.html.
Wolfram Research (2014), JuliaSetPoints, Wolfram Language function, https://reference.wolfram.com/language/ref/JuliaSetPoints.html.
CMS
Wolfram Language. 2014. "JuliaSetPoints." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/JuliaSetPoints.html.
Wolfram Language. 2014. "JuliaSetPoints." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/JuliaSetPoints.html.
APA
Wolfram Language. (2014). JuliaSetPoints. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/JuliaSetPoints.html
Wolfram Language. (2014). JuliaSetPoints. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/JuliaSetPoints.html
BibTeX
@misc{reference.wolfram_2025_juliasetpoints, author="Wolfram Research", title="{JuliaSetPoints}", year="2014", howpublished="\url{https://reference.wolfram.com/language/ref/JuliaSetPoints.html}", note=[Accessed: 01-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_juliasetpoints, organization={Wolfram Research}, title={JuliaSetPoints}, year={2014}, url={https://reference.wolfram.com/language/ref/JuliaSetPoints.html}, note=[Accessed: 01-April-2025
]}