WOLFRAM

returns a list of coordinates approximating the real and imaginary parts of the complex numbers in the Julia set of the rational function f of the variable z.

returns a list of coordinates of points approximating the Julia set of the function .

Details and Options

  • The Julia set of a function f is the closure of the set of all repelling fixed points of f.
  • JuliaSetPoints uses the same "InverseIteration" algorithm as JuliaSetPlot.
  • JuliaSetPoints has the options:
  • "ClosenessTolerance" 0.004minimum distance between points
    "Bound" 6radius around the origin in which to search
  • For polynomial functions, "Bound" is automatically determined to ensure the entire Julia set is captured.

Examples

open allclose all

Basic Examples  (2)Summary of the most common use cases

Find points of the Julia set of :

Out[1]=1
Out[2]=2

Find points of the Julia set of :

Out[1]=1
Out[2]=2

Scope  (2)Survey of the scope of standard use cases

JuliaSetPoints[c] generates the Julia set of a function of the form :

Out[1]=1

JuliaSetPoints[f,z] generates the Julia set of polynomials or more general rational functions:

Out[1]=1
Out[2]=2

Options  (2)Common values & functionality for each option

"ClosenessTolerance"  (1)

Increase "ClosenessTolerance" to make a quick, low-resolution picture of a Julia set:

Out[1]=1
Out[2]=2

Decrease "ClosenessTolerance" to make a high-resolution picture of a small part of a Julia set:

Out[3]=3

"Bound"  (1)

For some rational functions, increasing "Bound" can find more points:

Out[1]=1

Properties & Relations  (2)Properties of the function, and connections to other functions

JuliaSetPlot[c] generates essentially a ListPlot of the result of JuliaSetPoints[c]:

Out[1]=1
Out[2]=2

JuliaSetPoints[c] is the same as JuliaSetPoints[z^2+c,z]:

Out[1]=1

Possible Issues  (1)Common pitfalls and unexpected behavior

If the value of the "Bound" option is too low for a rational function, no points may be returned:

Out[1]=1
Out[2]=2

Some very large Julia sets can take a long time to compute with this method:

Out[3]=3

Interactive Examples  (1)Examples with interactive outputs

Explore the Julia sets for which the parameter c is on the unit circle:

Out[1]=1

Neat Examples  (3)Surprising or curious use cases

Stack successively finer approximations to a Julia set:

Out[1]=1

Add a dimension by varying a parameter:

Out[1]=1

Visualize the Julia sets given by points on part of the unit circle:

Out[1]=1
Wolfram Research (2014), JuliaSetPoints, Wolfram Language function, https://reference.wolfram.com/language/ref/JuliaSetPoints.html.
Wolfram Research (2014), JuliaSetPoints, Wolfram Language function, https://reference.wolfram.com/language/ref/JuliaSetPoints.html.

Text

Wolfram Research (2014), JuliaSetPoints, Wolfram Language function, https://reference.wolfram.com/language/ref/JuliaSetPoints.html.

Wolfram Research (2014), JuliaSetPoints, Wolfram Language function, https://reference.wolfram.com/language/ref/JuliaSetPoints.html.

CMS

Wolfram Language. 2014. "JuliaSetPoints." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/JuliaSetPoints.html.

Wolfram Language. 2014. "JuliaSetPoints." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/JuliaSetPoints.html.

APA

Wolfram Language. (2014). JuliaSetPoints. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/JuliaSetPoints.html

Wolfram Language. (2014). JuliaSetPoints. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/JuliaSetPoints.html

BibTeX

@misc{reference.wolfram_2025_juliasetpoints, author="Wolfram Research", title="{JuliaSetPoints}", year="2014", howpublished="\url{https://reference.wolfram.com/language/ref/JuliaSetPoints.html}", note=[Accessed: 01-April-2025 ]}

@misc{reference.wolfram_2025_juliasetpoints, author="Wolfram Research", title="{JuliaSetPoints}", year="2014", howpublished="\url{https://reference.wolfram.com/language/ref/JuliaSetPoints.html}", note=[Accessed: 01-April-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_juliasetpoints, organization={Wolfram Research}, title={JuliaSetPoints}, year={2014}, url={https://reference.wolfram.com/language/ref/JuliaSetPoints.html}, note=[Accessed: 01-April-2025 ]}

@online{reference.wolfram_2025_juliasetpoints, organization={Wolfram Research}, title={JuliaSetPoints}, year={2014}, url={https://reference.wolfram.com/language/ref/JuliaSetPoints.html}, note=[Accessed: 01-April-2025 ]}