LameCPrime[ν,j,z,m]
gives the
-derivative of the ![]()
Lamé function
of order
with elliptic parameter
.
LameCPrime
LameCPrime[ν,j,z,m]
gives the
-derivative of the ![]()
Lamé function
of order
with elliptic parameter
.
Details
- Mathematical function, suitable for both symbolic and numerical manipulation.
- LameCPrime belongs to the Lamé class of functions.
- For certain special arguments, LameCPrime automatically evaluates to exact values.
- LameCPrime can be evaluated to arbitrary numerical precision for an arbitrary complex argument.
- LameCPrime automatically threads over lists.
- LameCPrime[ν,0,z,0]=0 and LameCPrime[ν,j,z,0]=j Sin[j(
-z)].
Examples
open all close allBasic Examples (3)
Plot the LameCPrime function for
and
:
Series expansion of LameCPrime at the origin:
Scope (26)
Numerical Evaluation (5)
The precision of the output tracks the precision of the input:
LameCPrime can take complex number parameters and argument:
Evaluate LameCPrime efficiently at high precision:
Specific Values (3)
Value of LameCPrime when
and
:
Value of LameCPrime when
and
:
Some poles of LameCPrime:
For integer values of
and
, LameCPrime can be expressed entirely in terms of Jacobi elliptic functions:
Visualization (6)
Plot the first three even LameCPrime functions:
Plot the first three odd LameCPrime functions:
Plot the absolute value of the LameCPrime function for complex parameters:
Plot LameCPrime as a function of its first parameter
:
Plot LameCPrime as a function of
and elliptic parameter
:
Plot the family of LameCPrime functions for different values of the elliptic parameter
:
Function Properties (2)
When
is even, LameCPrime is a periodic function of real argument
with a period 2EllipticK[m] and has an initial value LameCPrime[ν,j,0,m]=0:
When
is odd, LameCPrime is a periodic function of real argument
with a period 4EllipticK[m]:
Differentiation (2)
The
-derivative of LameCPrime involves LameC function:
Derivatives of LameCPrime for specific cases of parameters:
Integration (3)
Indefinite integral of LameCPrime is LameC:
Definite numerical integrals of LameCPrime:
More integrals with LameCPrime:
Series Expansions (3)
Series expansion of LameCPrime at the origin:
Coefficient of the second term of this expansion:
Plot the first- and third-order approximations for LameCPrime around
:
Series expansion for LameCPrime at any ordinary complex point:
Function Representations (2)
Applications (1)
Use the LameCPrime function to calculate the derivatives of LameC:
Properties & Relations (2)
LameCPrime is an even function when
is a positive odd integer:
LameCPrime is an odd function when
is a non-negative even integer:
Use FunctionExpand to expand LameCPrime for integer values of
and
:
Possible Issues (1)
LameCPrime is not defined if
is a negative integer:
LameCPrime is not defined if
is not an integer:
See Also
Related Guides
History
Text
Wolfram Research (2020), LameCPrime, Wolfram Language function, https://reference.wolfram.com/language/ref/LameCPrime.html.
CMS
Wolfram Language. 2020. "LameCPrime." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/LameCPrime.html.
APA
Wolfram Language. (2020). LameCPrime. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/LameCPrime.html
BibTeX
@misc{reference.wolfram_2025_lamecprime, author="Wolfram Research", title="{LameCPrime}", year="2020", howpublished="\url{https://reference.wolfram.com/language/ref/LameCPrime.html}", note=[Accessed: 26-October-2025]}
BibLaTeX
@online{reference.wolfram_2025_lamecprime, organization={Wolfram Research}, title={LameCPrime}, year={2020}, url={https://reference.wolfram.com/language/ref/LameCPrime.html}, note=[Accessed: 26-October-2025]}