WOLFRAM

Matrices[{d1,d2}]

represents the domain of matrices of dimensions d1×d2.

Matrices[{d1,d2},dom]

represents the domain of matrices of dimensions d1×d2, with components in the domain dom.

Matrices[{d1,d2},dom,sym]

represents the subdomain of matrices d1×d2 with symmetry sym.

Details

  • Valid dimension specifications di in Matrices[{d1,d2},dom,sym] are positive integers. It is also possible to work with symbolic dimension specifications.
  • Valid component domain specifications dom are either Reals or Complexes. Matrices[{d1,d2}] uses Complexes by default.
  • For matrices, the symmetry sym can be either Symmetric[{1,2}], Antisymmetric[{1,2}], or {}, which represents the trivial symmetry.
  • If the symmetry sym is nontrivial, then the dimensions d1 and d2 must coincide.

Examples

open allclose all

Basic Examples  (1)Summary of the most common use cases

An antisymmetric real matrix in dimension :

Out[1]=1

The Dot product of with itself is also a × matrix:

Out[2]=2

But now it is a symmetric matrix:

Out[3]=3

Scope  (1)Survey of the scope of standard use cases

Declare matrices of any dimensions, with complex entries and no symmetry:

Out[1]=1

Symmetric real 3×3 matrices:

Out[2]=2

Antisymmetric matrices:

Out[3]=3
Out[4]=4

Applications  (3)Sample problems that can be solved with this function

Symbolic matrix algebra:

Out[2]=2
Out[3]=3
Out[4]=4

Check whether a matrix belongs to a given domain:

Out[1]=1
Out[2]=2

Conditions involving symbolic parameters may be converted into simpler conditions:

Out[3]=3
Out[4]=4
Out[5]=5

Check a subdomain relation:

Out[1]=1

Properties & Relations  (3)Properties of the function, and connections to other functions

Matrices can also be defined using Arrays with rank 2. These two assumptions are equivalent:

Out[1]=1
Out[2]=2

Matrices must be rectangular:

Out[1]=1

Two alternative ways of checking numerical matrices:

Out[1]=1
Out[2]=2

Possible Issues  (2)Common pitfalls and unexpected behavior

Addition of symbolic and explicit matrices is determined by the Listable attribute of Plus:

Out[1]=1

Hence, listability will in general affect operations that simultaneously involve both symbolic and explicit matrices.

The zero matrix may be represented as 0 in symbolic computations:

Out[1]=1
Wolfram Research (2012), Matrices, Wolfram Language function, https://reference.wolfram.com/language/ref/Matrices.html.
Wolfram Research (2012), Matrices, Wolfram Language function, https://reference.wolfram.com/language/ref/Matrices.html.

Text

Wolfram Research (2012), Matrices, Wolfram Language function, https://reference.wolfram.com/language/ref/Matrices.html.

Wolfram Research (2012), Matrices, Wolfram Language function, https://reference.wolfram.com/language/ref/Matrices.html.

CMS

Wolfram Language. 2012. "Matrices." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/Matrices.html.

Wolfram Language. 2012. "Matrices." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/Matrices.html.

APA

Wolfram Language. (2012). Matrices. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Matrices.html

Wolfram Language. (2012). Matrices. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Matrices.html

BibTeX

@misc{reference.wolfram_2025_matrices, author="Wolfram Research", title="{Matrices}", year="2012", howpublished="\url{https://reference.wolfram.com/language/ref/Matrices.html}", note=[Accessed: 02-June-2025 ]}

@misc{reference.wolfram_2025_matrices, author="Wolfram Research", title="{Matrices}", year="2012", howpublished="\url{https://reference.wolfram.com/language/ref/Matrices.html}", note=[Accessed: 02-June-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_matrices, organization={Wolfram Research}, title={Matrices}, year={2012}, url={https://reference.wolfram.com/language/ref/Matrices.html}, note=[Accessed: 02-June-2025 ]}

@online{reference.wolfram_2025_matrices, organization={Wolfram Research}, title={Matrices}, year={2012}, url={https://reference.wolfram.com/language/ref/Matrices.html}, note=[Accessed: 02-June-2025 ]}