Or
✖
Or
Details

- Or[e1,e2,…] can be input in StandardForm and InputForm as
. The character
can be entered as
||
,
or
, or \[Or].
- Or has attribute HoldAll, and explicitly controls the evaluation of its arguments. In
the
are evaluated in order, stopping if any of them are found to be True.
- Or gives symbolic results when necessary, removing initial arguments that are False.
Examples
open allclose allBasic Examples (4)Summary of the most common use cases

https://wolfram.com/xid/0obok-cfai82


https://wolfram.com/xid/0obok-yi6vv


https://wolfram.com/xid/0obok-geut30


https://wolfram.com/xid/0obok-cyw7h8

Scope (5)Survey of the scope of standard use cases
Or works with any number of arguments:

https://wolfram.com/xid/0obok-hb9gh

Or is associative:

https://wolfram.com/xid/0obok-d7h0mk

Or with explicit True or False arguments will simplify:

https://wolfram.com/xid/0obok-i4iqla


https://wolfram.com/xid/0obok-j63r74

Or evaluates its arguments in order, stopping when an argument evaluates to True:

https://wolfram.com/xid/0obok-dmd6x9


https://wolfram.com/xid/0obok-dltf5i

The order of arguments may be important:

https://wolfram.com/xid/0obok-lu6s7g


https://wolfram.com/xid/0obok-j8qidu


Symbolic transformations will not preserve argument ordering:

https://wolfram.com/xid/0obok-k00ay


https://wolfram.com/xid/0obok-c40ywc

TraditionalForm formatting:

https://wolfram.com/xid/0obok-d2raes

Applications (6)Sample problems that can be solved with this function
Combine conditions in a Wolfram Language program:

https://wolfram.com/xid/0obok-poaj84

https://wolfram.com/xid/0obok-jlvdi

If an argument of Or evaluates to True, any subsequent arguments are not evaluated:

https://wolfram.com/xid/0obok-b6s974

The argument order in Or matters; if the last two arguments are reversed, I≥0 is evaluated:

https://wolfram.com/xid/0obok-m52z05

https://wolfram.com/xid/0obok-f1vek



https://wolfram.com/xid/0obok-8d9x7

Combine equations and inequalities; Or is used both in the input and the output:

https://wolfram.com/xid/0obok-p9ndzd


https://wolfram.com/xid/0obok-ctbbhn


https://wolfram.com/xid/0obok-dazood

A cellular automaton based on Or:

https://wolfram.com/xid/0obok-gddzdp

Find the area of the union of sets given by algebraic conditions:

https://wolfram.com/xid/0obok-fe4ca9


https://wolfram.com/xid/0obok-c14dt7

Properties & Relations (7)Properties of the function, and connections to other functions
Truth table for binary Or:

https://wolfram.com/xid/0obok-ib02ro

Ternary Or:

https://wolfram.com/xid/0obok-cwl4xo


https://wolfram.com/xid/0obok-9ob000

Or with a single argument will return the evaluated argument regardless of value:

https://wolfram.com/xid/0obok-g7dcos

&& has higher precedence than :

https://wolfram.com/xid/0obok-lqm1sh

Use BooleanConvert to expand And with respect to Or:

https://wolfram.com/xid/0obok-fcn3e0


https://wolfram.com/xid/0obok-kk4ggu

De Morgan's laws relate And, Or, and Not:

https://wolfram.com/xid/0obok-d8jn2e


https://wolfram.com/xid/0obok-okqqa7

Disjunction of conditions corresponds to the Max of Boole functions:

https://wolfram.com/xid/0obok-jec7qu


https://wolfram.com/xid/0obok-yhneo

Wolfram Research (1988), Or, Wolfram Language function, https://reference.wolfram.com/language/ref/Or.html (updated 1996).
Text
Wolfram Research (1988), Or, Wolfram Language function, https://reference.wolfram.com/language/ref/Or.html (updated 1996).
Wolfram Research (1988), Or, Wolfram Language function, https://reference.wolfram.com/language/ref/Or.html (updated 1996).
CMS
Wolfram Language. 1988. "Or." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 1996. https://reference.wolfram.com/language/ref/Or.html.
Wolfram Language. 1988. "Or." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 1996. https://reference.wolfram.com/language/ref/Or.html.
APA
Wolfram Language. (1988). Or. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Or.html
Wolfram Language. (1988). Or. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Or.html
BibTeX
@misc{reference.wolfram_2025_or, author="Wolfram Research", title="{Or}", year="1996", howpublished="\url{https://reference.wolfram.com/language/ref/Or.html}", note=[Accessed: 21-June-2025
]}
BibLaTeX
@online{reference.wolfram_2025_or, organization={Wolfram Research}, title={Or}, year={1996}, url={https://reference.wolfram.com/language/ref/Or.html}, note=[Accessed: 21-June-2025
]}